全文获取类型
收费全文 | 8243篇 |
免费 | 852篇 |
国内免费 | 2篇 |
专业分类
9097篇 |
出版年
2021年 | 108篇 |
2018年 | 99篇 |
2017年 | 80篇 |
2016年 | 105篇 |
2015年 | 241篇 |
2014年 | 253篇 |
2013年 | 336篇 |
2012年 | 388篇 |
2011年 | 344篇 |
2010年 | 223篇 |
2009年 | 212篇 |
2008年 | 333篇 |
2007年 | 309篇 |
2006年 | 312篇 |
2005年 | 291篇 |
2004年 | 239篇 |
2003年 | 275篇 |
2002年 | 235篇 |
2001年 | 246篇 |
2000年 | 209篇 |
1999年 | 193篇 |
1998年 | 99篇 |
1997年 | 83篇 |
1996年 | 82篇 |
1995年 | 89篇 |
1994年 | 85篇 |
1993年 | 88篇 |
1992年 | 175篇 |
1991年 | 183篇 |
1990年 | 160篇 |
1989年 | 157篇 |
1988年 | 164篇 |
1987年 | 162篇 |
1986年 | 128篇 |
1985年 | 111篇 |
1984年 | 125篇 |
1983年 | 116篇 |
1981年 | 84篇 |
1980年 | 77篇 |
1979年 | 86篇 |
1978年 | 94篇 |
1977年 | 96篇 |
1975年 | 94篇 |
1974年 | 98篇 |
1973年 | 103篇 |
1972年 | 107篇 |
1971年 | 102篇 |
1970年 | 85篇 |
1969年 | 78篇 |
1968年 | 75篇 |
排序方式: 共有9097条查询结果,搜索用时 15 毫秒
981.
982.
983.
Using the patch clamp technique, we have investigated the blockade of maxi-K+ channels present on vas deferens epithelial cells by extracellular Ba2+. With symmetrical 140 mM K+ solutions, Ba2+ produced discrete blocking events consisting of both long closings of seconds duration (slow block) and fast closings of milliseconds duration (flickering block). Kinetic analysis showed that flickering block occurred according to an "open channel blocking" scheme and was eliminated by reducing external K+ to 4.5 mM. Slow block showed a complex voltage-dependence. At potentials between -20 mV and 20 mV, blockade was voltage-dependent; at potentials greater than 20 mV, blockade was voltage-independent, but markedly sensitive to the extracellular K+ concentration. These data reveal that the vas deferens maxi-K+ channel has two Ba2+ binding sites accessible from the extracellular side. Site one is located at the cytoplasmic side of the gating region and binding to this site causes flickering block. Site two is located close to the extracellular mouth of the channel and binding to this site causes slow block. 相似文献
984.
Conformational basis of energy transduction in mitochondria 总被引:1,自引:0,他引:1
985.
The pentagonal bipyramidal high-spin iron(II) complex, [(TPA2C(O)NHtBu)Fe(CF3SO3)]+, is shown to exhibit a high-anisotropy ground state, with fits to dc magnetization data providing an axial zero-field splitting parameter of D = − 7.9 cm−1. The utility of this compound as a building unit is demonstrated, as its reaction with [ReCl4(CN)2]2− affords the cyano-bridged dinuclear cluster (TPA2C(O)NHtBu)FeReCl4(CN)2. dc magnetic susceptibility measurements reveal intracluster ferromagnetic exchange interactions between FeII and ReIV centers, with J = +3.0 cm−1, giving rise to a spin ground state of S = 7/2. Moreover, fits to dc magnetization data obtained for the FeRe cluster show the presence of strong axial anisotropy, with D = −2.3 cm−1. Finally, variable-frequency ac susceptibility measurements reveal the onset of slow magnetic relaxation at low temperature, suggesting that the FeRe cluster is a single-molecule magnet. 相似文献
986.
James W. Freeman Amitava Chatterjee Brenda E. Ross Harris Busch 《Molecular and cellular biochemistry》1985,68(1):87-96
Summary Extractable nucleolar proteins from HeLa cells were used as a source of antigen to immunize mice for monoclonal antibody (MAb) production. Ten of the resulting MAbs shown to identify nucleolar phosphoprotein (110 kD/pI 5.5) were purified and used in immunochemical studies to further characterize protein C23. All ten MAbs showed nucleolar localization by indirect immunofluorescence; one antibody (FR2) also showed some nucleoplasmic localization that was attributed to a shared epitope between protein C23 and a 72 kD nuclear/nucleolar antigen. Reciprocal antibody cross blocking studies indicated that the ten MAbs identified nine distinct epitopes on protein C23. Interestingly, seven of the nine epitopes were shown by immunofluorescence and competitive ELISA studies to be species related. Immunostained patterns of exponentially growing HeLa cells suggest that protein C23 exists in vivo solely as a 110 kD peptide. However, protein C23 was subject to rapid degradation into a number of proteolytic fragments upon extraction or storage of isolated nucleoli. The failure to find protein C23 related peptides with molecular sizes less than 110 kD in exponentially growing cells and the lack of cytoplasmic localization of any of the ten MAbs suggests that protein C23 is not a prepro-protein processed in vivo to form ribosomal proteins as previously suggested (1). 相似文献
987.
M Hollstein K Rice M S Greenblatt T Soussi R Fuchs T Srlie E Hovig B Smith-Srensen R Montesano C C Harris 《Nucleic acids research》1994,22(17):3551-3555
988.
R S Decker 《The Journal of cell biology》1976,69(3):669-685
Thin-section, tracer, and freeze-cleave experiments on hypophysectomized Rana pipiens larvae reveal that gap junctions form between differentiating ependymoglial cells in response to thyroid hormone. These junctions assemble in large particle-free areas of the plasma membrane known as formation plaques. Between 20 and 40 h after hormone application, formation plaque area increases approximately 26-fold while gap junction area rises about 20-fold. The differentiation of these junctions requires the synthesis of new protein and probably RNA as well. On the basis of inhibitor experiments, it can be reported that formation plaques develop at about 16-20 h after hormone treatment and stages in the construction of gap junctions appear 4-8 h later. These studies suggest that gap junction subunits are synthesized and inserted into formation plaque membrane during the differentiation of the anuran ependymoglial cells. 相似文献
989.
Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles 总被引:7,自引:0,他引:7
Myosin isozymes and their fiber distribution were studied during regeneration of the soleus muscle of young adult (4-6 week old) rats. Muscle degeneration and regeneration were induced by a single subcutaneous injection of a snake toxin, notexin. If reinnervation of the regenerating muscle was allowed to occur (functional innervation nearly complete by 7 days), then fiber diameters continued to increase and by 28 days after toxin treatment they attained the same values as fibers in the contralateral soleus. If the muscles were denervated at the time of toxin injection, the early phases of regeneration still took place but the fibers failed to continue to increase in size. Electrophoresis of native myosin showed multiple bands between 3 and 21 days of regeneration which could be interpreted as indicating the presence of embryonic, neonatal, fast and slow myosins in the innervated muscles. Adult slow myosin became the exclusive from in innervated regenerates. In contrast, adult fast myosin became the predominant form in denervated regenerating muscles. Immunocytochemical localization of myosin isozymes demonstrated that in innervated muscles the slow form began to appear in a heterogeneous fashion at about 7 days, and became the major form in all fibers by 21-28 days. Thus, the regenerated muscle was almost entirely composed of slow fibers, in clear contrast to the contralateral muscle which was still substantially mixed. In denervated regenerating muscles, slow myosin was not detected biochemically or immunocytochemically whereas fast myosin was detected in all denervated fibers by 21-28 days. The regenerating soleus muscle therefore is clearly different from the developing soleus muscle in that the former is composed of a uniform fiber population with respect to myosin transitions. Moreover the satellite cells which account for the regeneration process in the soleus muscle do not appear to be predetermined with respect to myosin heavy chain expression, since the fibers they form can express either slow or fast isoforms. The induction of the slow myosin phenotype is entirely dependent on a positive, extrinsic influence of the nerve. 相似文献
990.
Michel A. Paul James C. Miller Ryan J. Love Harris Lieberman Sofi Blazeski Josephine Arendt 《Chronobiology international》2013,30(5):867-890
Jet lag degrades performance and operational readiness of recently deployed military personnel and other travelers. The objective of the studies reported here was to determine, using a narrow bandwidth light tower (500 nm), the optimum timing of light treatment to hasten adaptive circadian phase advance and delay. Three counterbalanced treatment order, repeated measures studies were conducted to compare melatonin suppression and phase shift across multiple light treatment timings. In Experiment 1, 14 normal healthy volunteers (8 men/6 women) aged 34.9±8.2 yrs (mean±SD) underwent light treatment at the following times: A) 06:00 to 07:00 h, B) 05:30 to 07:30 h, and C) 09:00 to 10:00 h (active control). In Experiment 2, 13 normal healthy subjects (7 men/6 women) aged 35.6±6.9 yrs, underwent light treatment at each of the following times: A) 06:00 to 07:00 h, B) 07:00 to 08:00 h, C) 08:00 to 09:00 h, and a no-light control session (D) from 07:00 to 08:00 h. In Experiment 3, 10 normal healthy subjects (6 men/4 women) aged 37.0±7.7 yrs underwent light treatment at the following times: A) 02:00 to 03:00 h, B) 02:30 to 03:30 h, and C) 03:00 to 04:00 h, with a no-light control (D) from 02:30 to 03:30 h. Dim light melatonin onset (DLMO) was established by two methods: when salivary melatonin levels exceeded a 1.0 pg/ml threshold, and when salivary melatonin levels exceeded three times the 0.9 pg/ml sensitivity of the radioimmunoasssy. Using the 1.0 pg/ml DLMO, significant phase advances were found in Experiment 1 for conditions A (p?<?.028) and B (p?<?0.004). Experiment 2 showed significant phase advances in conditions A (p?<?0.018) and B (p?<?0.003) but not C (p?<?0.23), relative to condition D. In Experiment 3, only condition B (p?<?0.035) provided a significant phase delay relative to condition D. Similar but generally smaller phase shifts were found with the 2.7 pg/ml DLMO method. This threshold was used to analyze phase shifts against circadian time of the start of light treatment for all three experiments. The best fit curve applied to these data (R2?=?0.94) provided a partial phase-response curve with maximum advance at approximately 9–11 h and maximum delay at approximately 5–6 h following DLMO. These data suggest largest phase advances will result when light treatment is started between 06:00 and 08:00 h, and greatest phase delays will result from light treatment started between 02:00 to 03:00 h in entrained subjects with a regular sleep wake cycle (23:00 to 07:00 h). 相似文献