首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   716篇
  免费   66篇
  2023年   5篇
  2022年   4篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   16篇
  2015年   23篇
  2014年   32篇
  2013年   41篇
  2012年   43篇
  2011年   54篇
  2010年   25篇
  2009年   31篇
  2008年   49篇
  2007年   41篇
  2006年   27篇
  2005年   48篇
  2004年   39篇
  2003年   25篇
  2002年   37篇
  2001年   23篇
  2000年   13篇
  1999年   16篇
  1998年   14篇
  1997年   4篇
  1996年   5篇
  1995年   10篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   7篇
  1990年   6篇
  1989年   11篇
  1988年   4篇
  1987年   3篇
  1986年   12篇
  1985年   10篇
  1984年   8篇
  1982年   4篇
  1981年   2篇
  1980年   6篇
  1979年   7篇
  1978年   4篇
  1977年   6篇
  1975年   3篇
  1972年   3篇
  1971年   5篇
  1969年   4篇
排序方式: 共有782条查询结果,搜索用时 15 毫秒
61.
Horizontal variation of first-year landfast sea ice properties was studied in the Gulf of Finland, the Baltic Sea. Several scales of variation were considered; a number of arrays with core spacings of 0.2, 2 and 20 m were sampled at different stages of the ice season for small-scale patchiness. Spacing between these arrays was from hundreds of meters to kilometers to study mesoscale variability, and once an onshore–offshore 40-km transect was sampled to study regional scale variability. Measured variables included salinity, stable oxygen isotopes (18O), chlorophyll a (chl-a), nutrients and dissolved organic carbon. On a large scale, a combination of variations in the under-ice water salinity (ice porosity), nutrient supply and the stage of ice development control the build-up of ice algal biomass. At scales of hundreds of meters to kilometers, there was significant variability in several parameters (salinity, chl-a, snow depth and ice thickness). Analyses of the data from the arrays did not show evidence of significant patchiness at scales <20 m for algal biomass. The results imply that the sampling effort in Baltic Sea ice studies should be concentrated on scales of hundreds of meters to kilometers. Using the variations observed in the study area, the estimate for depth-integrated algal biomass in landfast sea ice in the Gulf of Finland (March 2003) is 5.5±4.4 mg chl-a m–2.  相似文献   
62.
Copper(II) and zinc(II) complexes of a polyamino-polyol ligand 1,3,5-trideoxy-1,3,5-tris(methylamino)-cis-inositol (tmci) have been investigated as potential candidates for the selective elimination of the 5'-cap structure of mRNA. A cap-model compound ApppA has been utilised as substrate for studying the effect of the different metal ion complex catalysts on the hydrolysis of the triphosphate bridge. Kinetic experiments have been performed by the variation of pH, metal-to-ligand ratio and total concentrations of the metal ion and ligand. The zinc(II) complexes of tmci have been proved to possess a remarkable activity for the hydrolysis of ApppA. The observed rate enhancement compared to the uncatalysed reaction was found to be 12,000-fold, in the presence of 4.5mM zinc(II) and 1.5mM tmci at pH approximately 7.5. In contrast with the copper(II) containing systems, an extra product has also been formed during the cleavage process, beside the expected AMP and ADP. According to the ESI-MS characterisation of the samples, the additional product is a covalent phosphoester adduct of AMP and the ligand. The formation of this species is initiated by a nucleophilic attack of a zinc(II)-bound alcohol or alkoxo group on one of the alpha phosphate groups of ApppA, which leads to the formation of a phosphodiester bond. In an alternative pathway, the substrate is cleaved into AMP and ADP. According to the pH-potentiometric studies, performed with the tmci-zinc(II) system, di- and trinuclear complexes are responsible for the accelerated ApppA hydrolysis. The copper(II)-tmci 2:1 system showed only a modest kinetic activity. The rate acceleration significantly increased when threefold excess of copper(II) was applied. Although, the detailed investigations above pH approximately 6.6 have been prevented by precipitate formation during the addition of the substrate into the reaction solution, the activity of the copper(II)-tmci 3:1 system does not exceed that of the zinc(II) complexes. Due to the specific mechanism leading to the covalent extra product, the zinc(II) complexes of tmci provide a comparable rate enhancement for ApppA hydrolysis to the widely studied lanthanide or copper(II) species, in spite of the fact that they are stronger Lewis acids.  相似文献   
63.
We used molecular dynamics simulations to study how a non-natural substrate, L-ribose, interacts with the active site of Actinoplanes missouriensis xylose isomerase. The simulations showed that L-ribose does not stay liganded in the active site in the same way as D-xylose, in which the oxygens O2 and O4 are liganded to the metal M1. The oxygen O4 of L-ribose moved away from the metal M1 to an upside down position. Furthermore, the distances of the carbons C1 and C2 of L-ribose to the catalytic metal M2 were higher than in the case of D-xylose. These findings explain the extremely low reaction rate of xylose isomerase with L-ribose. The mutation V135N close to the C5-OH of the substrate increased the reaction efficiency 2- to 4-fold with L-ribose. V135N did not affect the reaction with D-xylose and L-arabinose, whereas the reaction with D-glucose was impaired, probably due to a hydrogen bond between Asn-135 and the substrate. When L-ribose was the substrate, Asn-135 formed a hydrogen bond to Glu-181. As a consequence, O4 of L-ribose stayed liganded to the metal M1 in the V135N mutant in molecular dynamics simulations. This explains the decreased K(m) of the V135N mutant with L-ribose.  相似文献   
64.
The potential association of CD2AP with the adherens junction protein E-cadherin, co-localization with the actin cytoskeleton, and involvement in cell migration was investigated in cultured rat gastric mucosal cells. In stationary cells, CD2AP was localized perinuclearly while E-cadherin was expressed along cell-cell contacts and F-actin formed a branched network and adhesion belts. In migrating cells, CD2AP appeared as thread-like accumulations in the leading edges, colocalizing with F-actin and occasionally with E-cadherin. Intracellular injection of anti-CD2AP significantly retarded the migration speed of the cells suggesting a crucial role for CD2AP in mucosal cell migration, possibly as a scaffolding protein between cell membrane proteins and actin cytoskeleton. Co-immunoprecipitation assays revealed that CD2AP and E-cadherin are in a complex in HGF stimulated cells. It is concluded that CD2AP interacts with E-cadherin and co-localizes with F-actin in the leading edge of migrating cells, and significantly contributes to cell migration in restituting gastric epithelium.  相似文献   
65.
Patients with atopic dermatitis (AD) have repeated cutaneous exposure to both environmental allergens and superantigen-producing strains of Staphylococcus aureus. We used a murine model of AD to investigate the role of staphylococcal enterotoxin B (SEB) in the modulation of allergen-induced skin inflammation. Mice were topically exposed to SEB, OVA, a combination of OVA and SEB (OVA/SEB), or PBS. Topical SEB and OVA/SEB exposure induced epidermal accumulation of CD8+ T cells and TCRVbeta8+ cells in contrast to OVA application, which induced a mainly dermal infiltration of CD4+ cells. SEB and OVA/SEB exposure elicited a mixed Th1/Th2-associated cytokine and chemokine expression profile within the skin. Restimulation of lymph node cells from OVA- and OVA/SEB-exposed mice with OVA elicited strong production of IL-13 protein, whereas substantial amounts of IFN-gamma protein were detected after SEB stimulation of cells derived from SEB- or OVA/SEB-exposed mice. Topical SEB treatment elicited vigorous production of SEB-specific IgE and IgG2a Abs and significantly increased the production of OVA-specific IgE and IgG2a Abs. The present study shows that topical exposure to SEB provokes epidermal accumulation of CD8+ T cells, a mixed Th2/Th1 type dermatitis and vigorous production of specific IgE and IgG2a Abs, which can be related to the chronic phase of atopic skin inflammation.  相似文献   
66.
Atopic dermatitis represents a chronically relapsing skin disease with a steadily increasing prevalence of 10-20% in children. Skin-infiltrating T cells, dendritic cells (DC), and mast cells are thought to play a crucial role in its pathogenesis. We report that the expression of the CC chemokine CCL1 (I-309) is significantly and selectively up-regulated in atopic dermatitis in comparison to psoriasis, cutaneous lupus erythematosus, or normal skin. CCL1 serum levels of atopic dermatitis patients are significantly higher than levels in healthy individuals. DC, mast cells, and dermal endothelial cells are abundant sources of CCL1 during atopic skin inflammation and allergen challenge, and Staphylococcus aureus-derived products induce its production. In vitro, binding and cross-linking of IgE on mast cells resulted in a significant up-regulation of this inflammatory chemokine. Its specific receptor, CCR8, is expressed on a small subset of circulating T cells and is abundantly expressed on interstitial DC, Langerhans cells generated in vitro, and their monocytic precursors. Although DC maintain their CCR8+ status during maturation, brief activation of circulating T cells recruits CCR8 from intracytoplamic stores to the cell surface. Moreover, the inflammatory and atopy-associated chemokine CCL1 synergizes with the homeostatic chemokine CXCL12 (SDF-1alpha) resulting in the recruitment of T cell and Langerhans cell-like DC. Taken together, these findings suggest that the axis CCL1-CCR8 links adaptive and innate immune functions that play a role in the initiation and amplification of atopic skin inflammation.  相似文献   
67.
The PrsA protein of Bacillus subtilis is an essential membrane-bound lipoprotein that is assumed to assist post-translocational folding of exported proteins and stabilize them in the compartment between the cytoplasmic membrane and cell wall. This folding activity is consistent with the homology of a segment of PrsA with parvulin-type peptidyl-prolyl cis/trans isomerases (PPIase). In this study, molecular modeling showed that the parvulin-like region can adopt a parvulin-type fold with structurally conserved active site residues. PrsA exhibits PPIase activity in a manner dependent on the parvulin-like domain. We constructed deletion, peptide insertion, and amino acid substitution mutations and demonstrated that the parvulin-like domain as well as flanking N- and C-terminal domains are essential for in vivo PrsA function in protein secretion and growth. Surprisingly, none of the predicted active site residues of the parvulin-like domain was essential for growth and protein secretion, although several active site mutations reduced or abolished the PPIase activity or the ability of PrsA to catalyze proline-limited protein folding in vitro. Our results indicate that PrsA is a PPIase, but the essential role in vivo seems to depend on some non-PPIase activity of both the parvulin-like and flanking domains.  相似文献   
68.
Preservation of dried liposomes in the presence of sugar and phosphate   总被引:3,自引:0,他引:3  
It has been well established that sugars can be used to stabilize liposomes during drying by a mechanism that involves the formation of a glassy state by the sugars as well as by a direct interaction between the sugar and the phospholipid head groups. We have investigated the protective effect of phosphate on solute retention and storage stability of egg phosphatidylcholine (egg PC) liposomes that were dried (air-dried and freeze-dried) in the presence of sugars and phosphate. The protective effect of phosphate was tested using both glucose (low T(g)) and sucrose (high T(g)) by measuring leakage of carboxyfluorescein (CF), which was incorporated inside the vesicles. Liposomes that were dried with glucose or phosphate alone showed complete leakage after rehydration. However, approximately 30% CF-retention was obtained using mixtures of phosphate and glucose. Approximately 75% CF-retention was observed with liposomes that were dried with sucrose. The solute retention further increased to 85% using mixtures of phosphate and sucrose. The pH of the phosphate buffer prior to drying was found to have a strong effect on the solute retention. Fourier transform infrared spectroscopy studies showed that phosphate and sugars form a strong hydrogen bonding network, which dramatically increased the T(g). The HPO(4)(2-) form of phosphate was found to interact stronger with sugars than the H(2)PO(4)(-) form. The increased solute retention of liposomes dried in the sugar phosphate mixtures did not coincide with improved storage stability. At temperatures below 60 degrees C the rate of solute-leakage was found to be strikingly higher in the presence of phosphate, indicating that phosphate impairs storage stability of dried liposomes.  相似文献   
69.
Atopic dermatitis is a chronic inflammatory skin disease with a steadily increasing prevalence. Exposure to allergens or bacterial superantigens triggers T and dendritic cell (DC) recruitment and induces atopic skin inflammation. In this study, we report that among all known chemokines CCL18/DC-CK1/PARC represents the most highly expressed ligand in atopic dermatitis. Moreover, CCL18 expression is associated with an atopic dermatitis phenotype when compared with other chronic inflammatory skin diseases. DCs either dispersed within the dermis or clustering at sites showing perivascular infiltrates are abundant sources of CCL18. In vitro, microbial products including LPS, peptidoglycan, and mannan, as well as the T cell-derived activation signal CD40L, induced CCL18 in monocytes. In contrast to monocytes, monocyte-derived, interstitial-type, and Langerhans-type DCs showed a constitutive and abundant expression of CCL18. In comparison to Langerhans cells, interstitial-type DCs produced higher constitutive levels of CCL18. In vivo, topical exposure to the relevant allergen or the superantigen staphylococcal enterotoxin B, resulted in a significant induction of CCL18 in atopic dermatitis patients. Furthermore, in nonatopic NiSO4-sensitized individuals, only relevant allergen but not irritant exposure resulted in the induction of CCL18. Taken together, findings of the present study demonstrate that CCL18 is associated with an atopy/allergy skin phenotype, and is expressed at the interface between the environment and the host by cells constantly screening foreign Ags. Its regulation by allergen exposure and microbial products suggests an important role for CCL18 in the initiation and amplification of atopic skin inflammation.  相似文献   
70.
A mixed-phase immunoassay based on simultaneous binding of an antibody to its fluorescently tagged peptide epitope and a PNA conjugate of the same peptide has been developed. As a fluorescent marker, a europium(III) chelate allowing time-resolved measurement from a single particle has been employed. The ternary complex formed in solution is immobilized by Watson-Crick base-pairing to a microparticle bearing a PNA sequence complementary to that present in the complex. The concentration of the antibody in the sample may then be determined by a single particle measurement. Accordingly, different antibodies may in principle be addressed by sequence-specific hybridization to different categorized microparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号