首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   11篇
  137篇
  2022年   1篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   7篇
  2014年   6篇
  2013年   6篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2009年   8篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2003年   11篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1981年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
61.
62.
Kaur H  Raghava GP 《In silico biology》2006,6(1-2):111-125
In this study, an attempt has been made to develop a method for predicting weak hydrogen bonding interactions, namely, C alpha-H...O and C alpha-H...pi interactions in proteins using artificial neural network. Both standard feed-forward neural network (FNN) and recurrent neural networks (RNN) have been trained and tested using five-fold cross-validation on a non-homologous dataset of 2298 protein chains where no pair of sequences has more than 25% sequence identity. It has been found that the prediction accuracy varies with the separation distance between donor and acceptor residues. The maximum sensitivity achieved with RNN for C alpha-H...O is 51.2% when donor and acceptor residues are four residues apart (i.e. at delta D-A = 4) and for C alpha-H...pi is 82.1% at delta D-A = 3. The performance of RNN is increased by 1-3% for both types of interactions when PSIPRED predicted protein secondary structure is used. Overall, RNN performs better than feed-forward networks at all separation distances between donor-acceptor pair for both types of interactions. Based on the observations, a web server CHpredict (available at http://www.imtech.res.in/raghava/chpredict/) has been developed for predicting donor and acceptor residues in C alpha-H...O and C alpha-H...pi interactions in proteins.  相似文献   
63.
Insufficient plasma insulin levels caused by deficits in both pancreatic β-cell function and mass contribute to the pathogenesis of type 2 diabetes. This loss of insulin-producing capacity is termed β-cell decompensation. Our work is focused on defining the role(s) of guanine nucleotide-binding protein (G protein) signaling pathways in regulating β-cell decompensation. We have previously demonstrated that the α-subunit of the heterotrimeric G(z) protein, Gα(z), impairs insulin secretion by suppressing production of cAMP. Pancreatic islets from Gα(z)-null mice also exhibit constitutively increased cAMP production and augmented glucose-stimulated insulin secretion, suggesting that Gα(z) is a tonic inhibitor of adenylate cyclase, the enzyme responsible for the conversion of ATP to cAMP. In the present study, we show that mice genetically deficient for Gα(z) are protected from developing glucose intolerance when fed a high fat (45 kcal%) diet. In these mice, a robust increase in β-cell proliferation is correlated with significantly increased β-cell mass. Further, an endogenous Gα(z) signaling pathway, through circulating prostaglandin E activating the EP3 isoform of the E prostanoid receptor, appears to be up-regulated in insulin-resistant, glucose-intolerant mice. These results, along with those of our previous work, link signaling through Gα(z) to both major aspects of β-cell decompensation: insufficient β-cell function and mass.  相似文献   
64.
The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms.Conifers (Coniferophyta) are well known for producing an abundant and diverse assortment of oleoresin diterpenoids, predominantly in the form of diterpene resin acids from specialized (or secondary) metabolism, that play roles in conifer defense (Trapp and Croteau, 2001a; Keeling and Bohlmann, 2006a; Bohlmann, 2008) and are an important source of biomaterials (Bohlmann and Keeling, 2008). Several conifer diterpene synthases (diTPSs) that biosynthesize these compounds have been functionally characterized (Stofer Vogel et al., 1996; Peters et al., 2000; Martin et al., 2004; Keeling and Bohlmann, 2006b; Ro and Bohlmann, 2006). The formation of diterpene resin acids of conifer specialized metabolism parallels the formation of ent-kaurenoic acid in the biosynthesis of the gibberellin diterpenoid phytohormones (Fig. 1; Keeling and Bohlmann, 2006a; Yamaguchi, 2008). In gibberellin biosynthesis, geranylgeranyl diphosphate (GGPP) is cyclized by diTPS activity to ent-copalyl diphosphate (ent-CPP), and the ent-CPP is further cyclized by diTPS activity to ent-kaurene. A cytochrome P450 (P450)-dependent monooxygenase (CYP701) oxidizes ent-kaurene to ent-kaurenoic acid (Davidson et al., 2006), paralleling the activity of a P450 (CYP720B1) that oxidizes abietadiene to abietic acid in conifer diterpene resin acid biosynthesis (Ro et al., 2005). Other P450s further functionalize ent-kaurenoic acid to form the biologically active gibberellins. Surprisingly, no conifer diTPS involved in the general (or primary) metabolism of gibberellins has been reported to date, while metabolite profiles of gibberellins have been well characterized in conifers for their role in flowering (Moritz et al., 1990).Open in a separate windowFigure 1.Comparison of the biosynthesis of gibberellins, as it is known in angiosperm and lower plants, with the biosynthesis of diterpene resin acids in conifers, a large group of gymnosperm trees. In conifers, the formation of diterpene resin acids involves bifunctional diTPS (e.g. abietadiene synthase) for the stepwise cyclization of GGPP into diterpenes such as abietadiene via a copalyl diphosphate intermediate that moves between the two active sites of the bifunctional diTPS (Peters et al., 2001). The products of the diTPS are subsequently oxidized by P450 to the resin acids. In contrast, gibberellin biosynthesis in angiosperms requires two monofunctional diTPSs to convert GGPP into ent-kaurene, which is subsequently modified by P450s. The two monofunctional diTPSs in angiosperm gibberellin biosynthesis are CPS and KS. In the lower plant P. patens, the CPS and KS activities are combined in a bifunctional diTPS similar to the bifunctional diTPS in conifer diterpene resin acid biosynthesis. Prior to this work, to our knowledge, it was not known if the formation of gibberellins in a gymnosperm involves two monofunctional diTPSs, as in angiosperms, or a bifunctional diTPS, as in gymnosperm diterpene resin acid biosynthesis and in P. patens gibberellin biosynthesis. (Figure adapted from Keeling and Bohlmann [2006a].)In the fungi Gibberella fujikuroi (Toyomasu et al., 2000) and Phaeosphaeria species L487 (Kawaide et al., 1997) and in the primitive land plant Physcomitrella patens (Bryophyta; Hayashi et al., 2006; Anterola and Shanle, 2008), the formation of ent-kaurene from GGPP is catalyzed by bifunctional diTPS enzymes. These enzymes contain two active sites. The N-terminal active site domain harbors a conserved DXDD motif and catalyzes the protonation-initiated cyclization of GGPP to ent-CPP (Prisic et al., 2007). In the C-terminal active site domain, a conserved DDXXD motif is essential for the diphosphate ionization-initiated cyclization of ent-CPP to ent-kaurene (Christianson, 2006). The presence of two active sites with their characteristic DXDD and DDXXD motifs resembles the structure of conifer bifunctional diTPSs in specialized metabolism of diterpene resin acid biosynthesis (Fig. 1), such as the grand fir (Abies grandis) abietadiene synthase (AgAS) and Norway spruce (Picea abies) levopimaradiene/abietadiene synthases (PaLAS; Peters et al., 2001; Martin et al., 2004; Keeling and Bohlmann, 2006a). In contrast, the formation of ent-kaurene from GGPP in angiosperms is catalyzed by two separate monofunctional enzymes, one with only the DXDD motif and having ent-copalyl diphosphate synthase (ent-CPS) activity and the other with only the DDXXD motif and having ent-kaurene synthase (ent-KS) activity (Yamaguchi, 2008).A previously published model for the evolution of plant diTPS (Trapp and Croteau, 2001b) suggests that genes encoding the monofunctional CPS and KS enzymes known in angiosperms originated by gene duplication and subfunctionalization (Lynch and Force, 2000) of an ancestral bifunctional CPS/KS gene that may have been similar to the gene for the CPS/KS enzyme of the moss P. patens. The same model also suggests that genes for diTPSs of gymnosperm specialized diterpene resin acid metabolism arose from duplication and subsequent neofunctionalization of an ancestral bifunctional diTPS of the gibberellin pathway (Trapp and Croteau, 2001b). The pathways to specialized oleoresin diterpenes existed in ancient plants prior to the differentiation of gymnosperms and angiosperms (Bray and Anderson, 2009). Vascular plants split from nonvascular plants approximately 500 million years ago, and angiosperms split from gymnosperms approximately 300 million years ago (Palmer et al., 2004). As there has been no report to date of genes involved in gibberellin biosynthesis in gymnosperms, it remains unresolved and cannot be predicted whether conifers have a bifunctional CPS/KS for the formation of ent-kaurene similar to the primitive land plant P. patens and paralleling the diTPSs for conifer specialized diterpene resin acid biosynthesis or whether they have separate monofunctional CPS and KS enzymes, as is the case in angiosperms.In this study, we made use of the extensive EST resources for spruce species (Pavy et al., 2005; Ralph et al., 2008), combined with isolation and sequencing of full-length cDNAs, genomic (g)DNA, and targeted bacterial artificial chromosome (BAC) clones, as well as enzyme assays with recombinant proteins to search for, and functionally characterize, possible monofunctional or bifunctional diTPS for ent-kaurene biosynthesis in a gymnosperm. In summary, we successfully isolated and characterized monofunctional ent-CPS (PgCPS) and ent-KS (PgKS) from white spruce (Picea glauca) and isolated orthologous cDNAs from Sitka spruce (Picea sitchensis). Comparison of enzyme functions and gene structures support common ancestry but different routes of evolution of monofunctional and bifunctional diTPS in conifer general and specialized metabolism, respectively.  相似文献   
65.
OBJECTIVE: To perform a quantitative analysis of DNA ploidy, S-phase fraction % (SPF%), p53 and multidrug resistance (MDR) gene expression as independent prognostic parameters and to compare these parameters with stage of the disease in multiple myeloma (MM) patients. STUDY DESIGN: Peripheral blood bone marrow samples were analyzed for DNA ploidy and SPF% using a FACScan flow cytometer (Becton Dickinson). Detection of p53 and MDR gene expression was done using immunocytochemistry. RESULTS: Aneuploidy was found in 5/48 (10.42%) total myeloma patients, all of whom revealed hyperdiploidy. High SPF% was noted in 18/37 (48.65%) newly diagnosed MM patients and 5/11 (45.45%) follow-up cases of myeloma. p53 Gene product was noted in 8/48 (16.66%) myeloma patients, 6 newly diagnosed and 2 on follow-up. MDR gene expression was detected in 4/27 (10.81%) newly diagnosed patients and in 1/11 (9.09%)follow-up patients. CONCLUSION: All myeloma patients with aneuploidy revealed hyperdiploidy. The majority of cases with high SPF% were at advanced stages, indicating the prognostic significance of SPF%. Although, there was no statistical significance of DNA ploidy, SPF%, p53 and MDR gene product expression, they are important prognostic parameters. Our results can provide baseline data for comparison with future studies since these parameters have not been reported earlier from the Indian subcontinent.  相似文献   
66.
67.
The family of FK506-binding proteins (FKBPs) consists of several members, which show peptidyl prolyl cistrans isomerase (PPIase) activity. PPIases facilitate the conversion of peptidyl prolyl bonds from cis to trans conformation, a rate-limiting step in protein folding. In the present study, we carried out cloning of cDNAs encoding three different wheat FKBPs viz., TaFKBP20-1, TaFKBP16-1 and TaFKBP15-1. In silico analysis suggested their likely localization to nucleus, cytosol and endoplasmic reticulum, respectively. Biochemical analyses demonstrated that none of the three purified FKBP proteins possesses detectable PPIase activity. Several putative interacting partners of TaFKBP20-1, TaFKBP16-1 and TaFKBP15-1were identified using online software tools. The results of this study provide further evidence that PPIase activity in plant FKBPs is not conserved, and these proteins may be playing important roles in the cell through interaction with target proteins.  相似文献   
68.

Terahertz (THz) quantum cascade lasers (QCLs) are electrically pumped and heterostructure based semiconductor laser sources with intersubband transitions of electrons in different layers of the quantum wells and barriers. The THz QCLs have high output power in THz region which make them important from application point of view. Recently intensive research has been carried out by researchers for obtaining efficient designs of THz sources. Most of the researchers have investigated the THz frequency range between 0.1 and 3 THz; however, the output power of the THz sources in the frequency range 3–5 THz is small because of transit time and resistance-capacitance effects. Nevertheless, the present review is focused for the development of efficient THz QCL sources in the frequency range from 3 to 5 THz where one of the major problem of thermal backfilling of the carriers has to be overcome by engineering the heterostructure.

  相似文献   
69.
Biochemical polymorphic gene frequency profiles from blood samples of two outbred and seven inbred lines of chickens were studied for hemoglobin, albumin, transferrin, alkaline phosphatase, esterase II, and leucine aminopeptidase, and from egg samples of these lines for ovoalbumen, ovoglobulin (G2 and G3), and conalbumen. Complete gene fixation was found for hemoglobin, albumin, transferrin, ovalbumin, ovoglobulin, and conalbumin. The same alleles were fixed in each system in each line. For four systems, a particular allele within a system predominated in seven populations; gene frequencies ranged from 0.60 to 0.98. For esterases I and II, the genes Es-I B and Es-II S ranged in frequency between 0.82 and 0.97, and between 0.64 and 0.93, respectively. For ovoglobulin, G 2 B ranged between 0.75 and 1.00 with four lines fixed for this allele. The rather remarkable similarity of gene frequency profiles among lines, several of which are only remotely related, suggests that certain characteristic polymorphic frequencies for these biochemical polymorphisms possess higher adaptive values in an evolutionary sense.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号