首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17285篇
  免费   1462篇
  国内免费   7篇
  18754篇
  2024年   24篇
  2023年   104篇
  2022年   260篇
  2021年   474篇
  2020年   253篇
  2019年   331篇
  2018年   435篇
  2017年   387篇
  2016年   618篇
  2015年   896篇
  2014年   991篇
  2013年   1188篇
  2012年   1505篇
  2011年   1488篇
  2010年   933篇
  2009年   722篇
  2008年   1094篇
  2007年   996篇
  2006年   960篇
  2005年   906篇
  2004年   793篇
  2003年   685篇
  2002年   691篇
  2001年   170篇
  2000年   127篇
  1999年   157篇
  1998年   147篇
  1997年   112篇
  1996年   90篇
  1995年   73篇
  1994年   73篇
  1993年   75篇
  1992年   82篇
  1991年   66篇
  1990年   67篇
  1989年   82篇
  1988年   55篇
  1987年   53篇
  1986年   63篇
  1985年   55篇
  1984年   60篇
  1983年   32篇
  1982年   35篇
  1981年   29篇
  1980年   29篇
  1979年   22篇
  1978年   25篇
  1976年   25篇
  1973年   22篇
  1972年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
We present a spatial model describing the growth of a photosynthetic microalgae biofilm. In this 2D-model we consider photosynthesis, cell carbon accumulation, extracellular matrix excretion, and mortality. The rate of each of these mechanisms is given by kinetic laws regulated by light, nitrate, oxygen and inorganic carbon. The model is based on mixture theory and the behaviour of each component is defined on one hand by mass conservation, which takes into account biological features of the system, and on the other hand by conservation of momentum, which expresses the physical properties of the components. The model simulates the biofilm structural dynamics following an initial colonization phase. It shows that a 75 μm thick active region drives the biofilm development. We then determine the optimal harvesting period and biofilm height which maximize productivity. Finally, different harvesting patterns are tested and their effect on biofilm structure are discussed. The optimal strategy differs whether the objective is to recover the total biofilm or just the algal biomass.  相似文献   
43.
Leprosy is still a prevalent disease in Brazil, representing 93% of all occurrences in the Americas. Leprosy neuropathy is one of the most worrying manifestations of the disease. Acute neuropathy usually occurs during reaction episodes and is called neuritis. Twenty-two leprosy patients were included in this study. These patients had neural pain associated with ulnar sensory neuropathy, with or without adjunct motor involvement. The neurological picture began within thirty days of the clinical evaluation. The patients underwent a nerve conduction study and the demyelinating findings confirmed the diagnosis of neuritis. Ultrasonographic study (US) of the ulnar nerve was performed in all patients by a radiologist who was blinded to the clinical or neurophysiological results. Morphological characteristics of the ulnar nerve were analyzed, such as echogenicity, fascicular pattern, transverse cross-sectional area (CSA), aspect of the epineurium, as well as their anatomical relationships. The volume of selected muscles referring to the ulnar nerve, as well as their echogenicity, was also examined. Based on this analysis, patients with increased ulnar nerve CSA associated with loss of fascicular pattern, epineurium hyperechogenicity and presence of power Doppler flow were classified as neuritis. Therefore, patients initially classified by the clinical-electrophysiological criteria were reclassified by the imaging criteria pre-established in this study as with and without neuritis. Loss of fascicular pattern and flow detection on power Doppler showed to be significant morphological features in the detection of neuritis. In 38.5% of patients without clinical or neurophysiological findings of neuritis, US identified power Doppler flow and loss of fascicular pattern. The US is a method of high resolution and portability, and its low cost means that it could be used as an auxiliary tool in the diagnosis of neuritis and its treatment, especially in basic health units.  相似文献   
44.
The aim of this study was to assess whether endogenous Ang II and oxidative stress produced by acute hypertonic sodium overload may regulate the expression of aquaporin-1 (AQP-1) and aquaporin-2 (AQP-2) in the kidney. Groups of anesthetized male Sprague–Dawley rats were infused with isotonic saline solution (control) or with hypertonic saline solution (Na group, 1 M NaCl), either alone or with losartan (10 mg kg?1) or tempol (0.5 mg min?1 kg?1) during 2 h. Renal function parameters were measured. Groups of unanesthetized animals were injected intraperitoneally with hypertonic saline solution, with or without free access to water intake, Na+W, and Na?W, respectively. The expression of AQP-1, AQP-2, Ang II, eNOS, and NF-kB were evaluated in the kidney by Western blot and immunohistochemistry. AQP-2 distribution was assessed by immunofluorescence. Na group showed increased natriuresis and diuresis, and Ang II and NF-kB expression, but decreased eNOS expression. Losartan or tempol enhanced further the diuresis, and AQP-2 and eNOS expression, as well as decreased Ang II and NF-kB expression. Confocal immunofluorescence imaging revealed labeling of AQP-2 in the apical plasma membrane with less labeling in the intracellular vesicles than the apical membrane in kidney medullary collecting duct principal cells both in C and Na groups. Importantly, our data also show that losartan and tempol induces a predominantly accumulation of AQP-2 in intracellular vesicles. In unanesthetized rats, Na+W group presented increased diuresis, natriuresis, and AQP-2 expression (112?±?25 vs 64?±?16; *p?<?0.05). Water deprivation increased plasma sodium and diuresis but decreased AQP-2 (46?±?22 vs 112?±?25; §p?<?0.05) and eNOS expression in the kidney. This study is a novel demonstration that renal endogenous Ang II–oxidative stress, induced in vivo in hypernatremic rats by an acute sodium overload, regulates AQP-2 expression.  相似文献   
45.
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.  相似文献   
46.
The increase in the understanding of the physical and functional properties of the biological material, from the cellular level down to single molecules, owes its success to the development of suitable high-sensitivity platforms to image the biomaterial and analyze its response to specific stimuli. Imaging has indeed reached molecular capabilities, thanks to optical or magnetic markers [1], to the atomic force microscopy (AFM) in surface reconstruction [2], and is nearing success in three-dimensional (3-D) reconstruction thanks to X-ray holography [3].  相似文献   
47.
In this report we investigated, within a group of closely related single domain camelid antibodies (VHHs), the relationship between binding affinity and neutralizing activity as it pertains to ricin, a fast‐acting toxin and biothreat agent. The V1C7‐like VHHs (V1C7, V2B9, V2E8, and V5C1) are similar in amino acid sequence, but differ in their binding affinities and toxin‐neutralizing activities. Using the X‐ray crystal structure of V1C7 in complex with ricin's enzymatic subunit (RTA) as a template, Rosetta‐based homology modeling coupled with energetic decomposition led us to predict that a single pairwise interaction between Arg29 on V5C1 and Glu67 on RTA was responsible for the difference in ricin toxin binding affinity between V1C7, a weak neutralizer, and V5C1, a moderate neutralizer. This prediction was borne out experimentally: substitution of Arg for Gly at position 29 enhanced V1C7's binding affinity for ricin, whereas the reverse (ie, Gly for Arg at position 29) diminished V5C1's binding affinity by >10 fold. As expected, the V5C1R29G mutant was largely devoid of toxin‐neutralizing activity (TNA). However, the TNA of the V1C7G29R mutant was not correspondingly improved, indicating that in the V1C7 family binding affinity alone does not account for differences in antibody function. V1C7 and V5C1, as well as their respective point mutants, recognized indistinguishable epitopes on RTA, at least at the level of sensitivity afforded by hydrogen‐deuterium mass spectrometry. The results of this study have implications for engineering therapeutic antibodies because they demonstrate that even subtle differences in epitope specificity can account for important differences in antibody function.  相似文献   
48.
49.
Plant and Soil - Southern South American Proteaceae can occupy soils that are rich in total phosphorus (P) but poor in available P (for example volcanic soils) thanks to their cluster roots (CR),...  相似文献   
50.
Widely divergent vertebrates share a common central temporal mechanism for representing periodicities of acoustic waveform events. In the auditory nerve, periodicities corresponding to frequencies or rates from about 10 Hz to over 1,000 Hz are extracted from pure tones, from low-frequency complex sounds (e.g., 1st harmonic in bullfrog calls), from mid-frequency sounds with low-frequency modulations (e.g., amplitude modulation rates in cat vocalizations), and from time intervals between high-frequency transients (e.g., pulse-echo delay in bat sonar). Time locking of neuronal responses to periodicities from about 50 ms down to 4 ms or less (about 20–300 Hz) is preserved in the auditory midbrain, where responses are dispersed across many neurons with different onset latencies from 4–5 to 20–50 ms. Midbrain latency distributions are wide enough to encompass two or more repetitions of successive acoustic events, so that responses to multiple, successive periods are ongoing simultaneously in different midbrain neurons. These latencies have a previously unnoticed periodic temporal pattern that determines the specific times for the dispersed on-responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号