首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   19篇
  2021年   4篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   8篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1977年   2篇
  1976年   4篇
  1970年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有145条查询结果,搜索用时 31 毫秒
31.
32.

Background

All viruses in the family Bunyaviridae possess a tripartite genome, consisting of a small, a medium, and a large RNA segment. Bunyaviruses therefore possess considerable evolutionary potential, attributable to both intramolecular changes and to genome segment reassortment. Hantaviruses (family Bunyaviridae, genus Hantavirus) are known to cause human hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome. The primary reservoir host of Sin Nombre virus is the deer mouse (Peromyscus maniculatus), which is widely distributed in North America. We investigated the prevalence of intramolecular changes and of genomic reassortment among Sin Nombre viruses detected in deer mice in three western states.

Methods

Portions of the Sin Nombre virus small (S) and medium (M) RNA segments were amplified by RT-PCR from kidney, lung, liver and spleen of seropositive peromyscine rodents, principally deer mice, collected in Colorado, New Mexico and Montana from 1995 to 2007. Both a 142 nucleotide (nt) amplicon of the M segment, encoding a portion of the G2 transmembrane glycoprotein, and a 751 nt amplicon of the S segment, encoding part of the nucleocapsid protein, were cloned and sequenced from 19 deer mice and from one brush mouse (P. boylii), S RNA but not M RNA from one deer mouse, and M RNA but not S RNA from another deer mouse.

Results

Two of 20 viruses were found to be reassortants. Within virus sequences from different rodents, the average rate of synonymous substitutions among all pair-wise comparisons (πs) was 0.378 in the M segment and 0.312 in the S segment sequences. The replacement substitution rate (πa) was 7.0 × 10-4 in the M segment and 17.3 × 10-4 in the S segment sequences. The low πa relative to πs suggests strong purifying selection and this was confirmed by a Fu and Li analysis. The absolute rate of molecular evolution of the M segment was 6.76 × 10-3 substitutions/site/year. The absolute age of the M segment tree was estimated to be 37 years. In the S segment the rate of molecular evolution was 1.93 × 10-3 substitutions/site/year and the absolute age of the tree was 106 years. Assuming that mice were infected with a single Sin Nombre virus genotype, phylogenetic analyses revealed that 10% (2/20) of viruses were reassortants, similar to the 14% (6/43) found in a previous report.

Conclusion

Age estimates from both segments suggest that Sin Nombre virus has evolved within the past 37–106 years. The rates of evolutionary changes reported here suggest that Sin Nombre virus M and S segment reassortment occurs frequently in nature.  相似文献   
33.

Background  

Gene selection is an important step when building predictors of disease state based on gene expression data. Gene selection generally improves performance and identifies a relevant subset of genes. Many univariate and multivariate gene selection approaches have been proposed. Frequently the claim is made that genes are co-regulated (due to pathway dependencies) and that multivariate approaches are therefore per definition more desirable than univariate selection approaches. Based on the published performances of all these approaches a fair comparison of the available results can not be made. This mainly stems from two factors. First, the results are often biased, since the validation set is in one way or another involved in training the predictor, resulting in optimistically biased performance estimates. Second, the published results are often based on a small number of relatively simple datasets. Consequently no generally applicable conclusions can be drawn.  相似文献   
34.
The type 3 iodothyronine selenodeiodinase (D3) is an integral membrane protein that inactivates thyroid hormones. By using immunofluorescence cytochemistry confocal microscopy of live or fixed cells transiently expressing FLAG-tagged human D3 or monkey hepatocarcinoma cells expressing endogenous D3, we identified D3 in the plasma membrane. It co-localizes with Na,K-ATPase alpha, with the early endosomal marker EEA-1 and clathrin, but not with two endoplasmic reticulum resident proteins. Most of the D3 molecule is extracellular and can be biotinylated with a cell-impermeant probe. There is constant internalization of D3 that is blocked by sucrose or methyl-beta-cyclodextrin-containing medium. Exposing cells to a weak base such as primaquine increases the pool of internalized D3, suggesting that D3 is recycled between plasma membrane and early endosomes. Such recycling could account for the much longer half-life of D3 (12 h) than the thyroxine activating members of the selenodeiodinase family, type 1 (D1; 8 h) or type 2 (D2; 2 h) deiodinase. The extracellular location of D3 gives ready access to circulating thyroid hormones, explaining its capacity for rapid inactivation of circulating thyroxine and triiodothyronine in patients with hemangiomas and its blockade of the access of maternal thyroid hormones to the human fetus.  相似文献   
35.
Retinoic acid receptor (RAR) and thyroid hormone receptor (T3R) are structurally similar and can bind as homodimers or T3R-RAR heterodimers to a single synthetic DNA response element. The interaction of these two types of receptors with wild type elements, however, has not been systematically investigated. Promoter elements from genes regulated by retinoic acid (RA) or thyroid hormone (T3) were tested for response to T3 and RA in transient transfections in both JEG and COS cells. The elements were classified as primarily responsive to RA or to T3 or responsive to both ligands. Binding of highly purified RAR alpha and T3R alpha to the various elements was assessed using the gel shift assay. Those elements predominantly responsive to one ligand showed preferential binding to the appropriate receptor. A series of point mutations were introduced into the rat GH T3 response element to further define sequence requirements for response to both RA and T3. Down-mutations in any of the three hexamers (previously demonstrated to be required for full response to T3 and full binding of T3R) also decreased RA induction and RAR binding. However, only one of two sets of up-mutations for T3 response also increased RA induction, demonstrating differences in hexamer preference between RAR and T3R. Variation in spacing of the three hexamers did not influence RA vs. T3 induction or RAR vs. T3R binding according to the predictions of a simple hexamer spacing model. There was a strong correlation between the extent of T3R dimer binding and strength of T3 induction for a subset of elements studied in JEG cells (r = 0.97, P < 0.01) and a weaker but significant correlation in COS cells (r = 0.65, P < 0.05)). In contrast, RAR dimer binding by the wild type elements did not quantitatively correlate with RA induction in either JEG (r = 0.13, P > 0.05) or COS cells (r = 0.21, P > 0.05). These results suggests that RAR interacts with a heterodimer partner(s) which influences binding site specificity, whereas T3R heterodimer partner(s) is less likely to alter binding site recognition. The observed difference in COS and JEG cells as well as the weak T3R binding-function relationship of the malic enzyme element, however, suggest that the influence of T3R heterodimer partner(s) on binding site specificity is likely to vary with cell type and the specific element tested.  相似文献   
36.

Background  

Cerebellar granule cell precursors are specifically generated within the hindbrain segment, rhombomere 1, which is bounded rostrally by the midbrain/hindbrain isthmus and caudally by the boundary of the Hoxa2 expression domain. While graded signals from the isthmus have a demonstrable patterning role within this region, the significance of segmental identity for neuronal specification within rhombomere 1 is unexplored. We examined the response of granule cell precursors to the overexpression of Hoxa2, which normally determines patterns of development specific to the hindbrain. How much does the development of the cerebellum, a midbrain/hindbrain structure, reflect its neuromeric origin as a hindbrain segment?  相似文献   
37.
The type 2 monodeiodinase (D2) is an endoplasmic reticulum-resident membrane selenoprotein responsible for catalyzing the first step in thyroid hormone action, T(4) deiodination to T(3). Its short half-life is due to ubiquitination and proteolysis by proteasomes, a mechanism that is accelerated by D2 interaction with T(4). To identify proteins involved in D2 ubiquitination, a FLAG-tagged selenocystine133-to-Cys mutation of the human D2 (CysD2) was created and expressed in Saccharomyces cerevisiae using the GAL1 gene promoter. CysD2 activity was detected in the microsomes, indistinguishable from transiently expressed CysD2 in vertebrate cells. Treatment with 100 mg/ml cycloheximide or 30 micro M T(4) caused rapid loss of CysD2 (t(1/2) = approximately 30 min). Clasto-lactacystin beta-lactone not only increased galactose-inducible CysD2 but also stabilized CysD2 in the presence of cycloheximide or T(4). Immunoprecipitation with anti-FLAG antibody combined with Western analysis with antiubiquitin revealed that CysD2 is heavily ubiquitinated. Expression of CysD2 in yeast strains that lack the ubiquitin conjugases Ubc6p or Ubc7p stabilized CysD2 half-life by markedly reducing CysD2 ubiquitination, whereas no difference was detected in Ubc1p-deficient mutants. Similarly, expression of CysD2 in UBC6 and UBC7 mutants also impaired the substrate-induced loss of CysD2 activity and protein. In conclusion, Ubc6p and Ubc7p are required for normal and substrate-induced ubiquitination and proteolysis of D2.  相似文献   
38.
The goal of the present investigation was to analyze the types 2 (D2) and 3 (D3) iodothyronine deiodinases in various structures within the central nervous system (CNS) in response to iodine deficiency. After 5-6 wk of low-iodine diet (LID) or LID + 2 microg potassium iodide/ml (LID + KI; control), rats' brains were processed for in situ hybridization histochemistry for D2 and D3 mRNA or dissected, frozen in liquid nitrogen, and processed for D2 and D3 activities. LID did not affect weight gain or serum triiodothyronine, but plasma thyroxine (T4) was undetectable. In the LID + KI animals, D3 activities were highest in the cerebral cortex (CO) and hippocampus (HI), followed by the olfactory bulb and was lowest in cerebellum (CE). Iodine deficiency decreased D3 mRNA expression in all CNS regions, and these changes were accompanied by three- to eightfold decreases in D3 activity. In control animals, D2 activity in the medial basal hypothalamus (MBH) was similar to that in pituitary gland. Of the CNS D2-expressing regions analyzed, the two most responsive to iodine deficiency were the CO and HI, in which an approximately 20-fold increase in D2 activity occurred. Other regions, i.e., CE, lateral hypothalamus, MBH, and pituitary gland, showed smaller increases. The distribution of and changes in D2 mRNA were similar to those of D2 activity. Our results indicate that decreases in the expression of D3 and increases in D2 are an integral peripheral component of the physiological response of the CNS to iodine deficiency.  相似文献   
39.
Using circulant symmetry to model featureless objects   总被引:1,自引:0,他引:1  
Kent  JT; Dryden  IL; Anderson  CR 《Biometrika》2000,87(3):527-544
  相似文献   
40.
Porcine conceptus secretory proteins (pCSP) were obtained from medium in which pig conceptuses, collected on Day 15 of pregnancy, were cultured for 30 h. Culture medium was pooled, dialyzed, and concentrated by Amicon ultrafiltration for intrauterine infusion. Serum proteins (SP) were obtained from blood collected from a Day 15 pregnant gilt and diluted for intrauterine infusion. Catheters were placed into both uterine horns and the inferior vena cava of cyclic (Day 8) gilts. Single blood samples were collected at 0800 h on Days 9, 10, and 11. On Day 11, all gilts received 1 mg estradiol-17 beta (E2) i.m. at 0800 h. Protein infusions commenced on Day 12 and continued through Day 15, twice daily at 0800 h and 2000 h. Protein infusions per uterine horn were (1) 4.0 mg pCSP + 4.0 mg SP (pCSP, 4 gilts) and (2) 8.0 mg SP (SP, 4 gilts). Blood samples were collected every 15 min on Days 12 through 17 between 0805 h and 1100 h. Single blood samples were collected at 0800 h after Day 17 until gilts exhibited estrus. Concentrations of prostaglandin (PG) E, 13,14-dihydro-15-keto-PGF2 alpha (PGFM), and progesterone (P4) were measured by specific radioimmunoassays. Interestrous intervals for pCSP-treated (18.2 days) and SP-treated (18.0 days) gilts were not different (SEM = 0.8 days) and temporal changes in concentrations of P4 in plasma did not differ between pCSP-treated (29.2 ng/ml) and SP-treated (31.2 ng/ml) gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号