首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   19篇
  145篇
  2021年   4篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   8篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   2篇
  1977年   2篇
  1976年   4篇
  1970年   1篇
  1967年   1篇
  1966年   2篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
121.
Dutch Belt rabbit erythrocyte ghosts have been examined by Raman spectroscopy. An unusually high signal-to-noise spectrum was obtained which enabled assessment of vibrations within 300 cm?1 of the exciting radiation. Assignment of the observed bands to specific vibrations yielded information concerning membrane fluidity, the conformations of the peptide backbones and disulfide bonds of membrane proteins, and the configurations of lipid unsaturated hydrocarbon side chains.  相似文献   
122.
In eukaryotes, the specific cotranslational insertion of selenocysteine at UGA codons requires the presence of a secondary structural motif in the 3' untranslated region of the selenoprotein mRNA. This selenocysteine insertion sequence (SECIS) element is predicted to form a hairpin and contains three regions of sequence invariance that are thought to interact with a specific protein or proteins. Specificity of RNA-binding protein recognition of cognate RNAs is usually characterized by the ability of the protein to recognize and distinguish between a consensus binding site and sequences containing mutations to highly conserved positions in the consensus sequence. Using a functional assay for the ability of wild-type and mutant SECIS elements to direct cotranslational selenocysteine incorporation, we have investigated the relative contributions of individual invariant nucleotides to SECIS element function. We report the novel finding that, for this consensus RNA motif, mutations at the invariant nucleotides are tolerated to different degrees in different elements, depending on the identity of a single nonconserved nucleotide. Further, we demonstrate that the sequences adjacent to the minimal element, although not required for function, can affect function through their propensity to base pair. These findings shed light on the specific structure these conserved sequences may form within the element. This information is crucial to the design of strategies for the identification of SECIS-binding proteins, and hence the elucidation of the mechanism of selenocysteine incorporation in eukaryotes.  相似文献   
123.
M J Berry  L Banu  J W Harney    P R Larsen 《The EMBO journal》1993,12(8):3315-3322
We investigated the requirements for selenocysteine insertion at single or multiple UGA codons in eukaryotic selenoproteins. Two functional SECIS elements were identified in the 3' untranslated region of the rat selenoprotein P mRNA, with predicted stem-loops and critical nucleotides similar to those in the SECIS elements in the type I iodothyronine 5' deiodinase (5'DI) and glutathione peroxidase selenoprotein mRNAs. Site-directed mutational analyses of three SECIS elements confirmed that conserved nucleotides in the loop and in unpaired regions of the stem are critical for activity. This indicates that multiple contact sites are required for SECIS function. Stop codon function at any of five out-of-context UGA codons in the 5'DI mRNA was suppressed by SECIS elements from the 5'DI or selenoprotein P genes linked downstream. Thus, the presence of SECIS elements in eukaryotic selenoprotein mRNAs permits complete flexibility in UGA codon position.  相似文献   
124.
Interdependent MHC-DRB exon-plus-intron evolution in artiodactyls   总被引:2,自引:0,他引:2  
Exon 2 sequences of an expressed MHC-DRB locus from sheep were examined for polymorphisms in both the antigen-binding regions and the adjacent intronic mixed simple tandem repeat. Twenty-one novel exon 2 Ovar-DRB alleles were identified. Short nucleotide motifs are extensively shared between certain exon 2 regions of Ovar-DRB alleles. The simple repeat variations, the number of different amino acids at usually polymorphic sites, and the number of silent substitutions were reduced in the intraspecies analyses of sheep DRB sequences, compared with those of cattle and goats. It was paradoxical that the abundance of different sheep alleles was similar to that of cattle and goats. This paradox may be explained by postulating a relatively small number of "ancient" alleles, with the present-day Ovar-DRB alleles being generated by reciprocal exchange of nucleotide motifs. At the antigen-binding sites, new combinations of amino acids were maintained in Ovar-DRB alleles by strong positive selection. In sheep--and less pronounced in goats and cattle--the DRB alleles can be divided into two groups. In one group, silent substitutions are increased when compared with the other. This suggests separate evolutionary pathways for certain groups of DRB alleles within a species. The simple repetitive sequences are also discussed with respect to the evolution of DRB alleles.   相似文献   
125.
The serotonin transporter (SERT) on the plasma membrane is the major mechanism for the clearance of plasma serotonin (5-hydroxytryptamine (5HT)). The uptake rates of cells depend on the density of SERT molecules on the plasma membrane. Interestingly, the number of SERT molecules on the platelet surface is down-regulated when plasma 5HT ([5HT](ex)) is elevated. It is well reported that stimulation of cells with high [5HT](ex) induces transamidation of a small GTPase, Rab4. Modification with 5HT stabilizes Rab4 in its active, GTP-bound form, Rab4-GTP. Although investigating the mechanism by which elevated plasma 5HT level down-regulates the density of SERT molecules on the plasma membrane, we studied Rab4 and SERT in heterologous and platelet expression systems. Our data demonstrate that, in response to elevated [5HT](ex), Rab4-GTP co-localizes with and binds to SERT. The association of SERT with Rab4-GTP depends on: (i) 5HT modification and (ii) the GTP-binding ability of Rab4. Their association retains transporter molecules intracellularly. Furthermore, we mapped the Rab4-SERT association domain to amino acids 616-624 in the cytoplasmic tail of SERT. This finding provides an explanation for the role of the C terminus in the localization and trafficking of SERT via Rab4 in a plasma 5HT-dependent manner. Therefore, we propose that elevated [5HT](ex)"paralyzes" the translocation of SERT from intracellular locations to the plasma membrane by controlling transamidation and Rab4-GTP formation.  相似文献   
126.
Termination of translation in eukaryotes is catalyzed by eRF1, the stop codon recognition factor, and eRF3, an eRF1 and ribosome-dependent GTPase. In selenoprotein mRNAs, UGA codons, which typically specify termination, serve an alternate function as sense codons. Selenocysteine incorporation involves a unique tRNA with an anticodon complementary to UGA, a unique elongation factor specific for this tRNA, and cis-acting secondary structures in selenoprotein mRNAs, termed SECIS elements. To gain insight into the interplay between the selenocysteine insertion and termination machinery, we investigated the effects of overexpressing eRF1 and eRF3, and of altering UGA codon context, on the efficiency of selenoprotein synthesis in a transient transfection system. Overexpression of eRF1 does not increase termination at naturally occurring selenocysteine codons. Surprisingly, selenocysteine incorporation is enhanced. Overexpression of eRF3 did not affect incorporation efficiency. Coexpression of both factors reproduced the effects with eRF1 alone. Finally, we show that the nucleotide context immediately upstream and downstream of the UGA codon significantly affects termination to incorporation ratios and the response to eRF overexpression. Implications for the mechanisms of selenocysteine incorporation and termination are discussed.  相似文献   
127.

Background

Management of chronic diseases requires patients to adhere to recommended health behavior change and complete tests for monitoring. While studies have shown an association between low income and lack of adherence, the reasons why people with low income may be less likely to adhere are unclear. We sought to determine the association between household income and receipt of health behavior change advice, adherence to advice, receipt of recommended monitoring tests, and self-reported reasons for non-adherence/non-receipt.

Methods

We conducted a population-weighted survey, with 1849 respondents with cardiovascular-related chronic diseases (heart disease, hypertension, diabetes, stroke) from Western Canada (n = 1849). We used log-binomial regression to examine the association between household income and the outcome variables of interest: receipt of advice for and adherence to health behavior change (sodium reduction, dietary improvement, increased physical activity, smoking cessation, weight loss), reasons for non-adherence, receipt of recommended monitoring tests (cholesterol, blood glucose, blood pressure), and reasons for non-receipt of tests.

Results

Behavior change advice was received equally by both low and high income respondents. Low income respondents were more likely than those with high income to not adhere to recommendations regarding smoking cessation (adjusted prevalence rate ratio (PRR): 1.55, 95%CI: 1.09–2.20), and more likely to not receive measurements of blood cholesterol (PRR: 1.72, 95%CI 1.24–2.40) or glucose (PRR: 1.80, 95%CI: 1.26–2.58). Those with low income were less likely to state that non-adherence/non-receipt was due to personal choice, and more likely to state that it was due to an extrinsic factor, such as cost or lack of accessibility.

Conclusions

There are important income-related differences in the patterns of health behavior change and disease monitoring, as well as reasons for non-adherence or non-receipt. Among those with low income, adherence to health behavior change and monitoring may be improved by addressing modifiable barriers such as cost and access.  相似文献   
128.
129.
The type 2 iodothyronine selenodeiodinase (D2) is an endoplasmic reticulum (ER)-resident selenoprotein that activates T4 to T3, playing a critical role in thyroid homeostasis. D2 has an approximately 45-min half-life due to selective ubiquitin-mediated ER-associated degradation (ERAD), a process of particular interest because it is accelerated by exposure to D2 substrates, T4 or rT3. The present in vitro binding studies indicate that glutathione-S-transferase (GST)-human D2 fusion proteins specifically associate with a mammalian homolog of the ubiquitin conjugase UBC7 (MmUBC7), with localization to amino acids 169-234 of D2. Coexpression of D2 with an inactive D2 mutant or a truncated version containing amino acids 169-234 stabilizes D2 half-life, supporting the importance of the carboxyl region of D2 for ERAD. Mammalian UBC6 (MmUBC6) does not directly associate with D2 but can associate with a complex containing UBC7 and D2. At the same time, functional studies in human embryonic kidney-293 cells indicate that D2 activity half-life and protein levels are stabilized only when inactive mutants of both UBC6 and UBC7 are overexpressed with D2, suggesting that redundancy may exist at the level of the E2 for both basal and substrate-accelerated D2 ERAD. In conclusion, D2 ERAD in human cells proceeds via an association between UBC7 and the carboxyl region of D2, a unique mechanism for the control of thyroid hormone activation.  相似文献   
130.
Decoding apparatus for eukaryotic selenocysteine insertion   总被引:14,自引:0,他引:14       下载免费PDF全文
Decoding UGA as selenocysteine requires a unique tRNA, a specialized elongation factor, and specific secondary structures in the mRNA, termed SECIS elements. Eukaryotic SECIS elements are found in the 3′ untranslated region of selenoprotein mRNAs while those in prokaryotes occur immediately downstream of UGA. Consequently, a single eukaryotic SECIS element can serve multiple UGA codons, whereas prokaryotic SECIS elements only function for the adjacent UGA, suggesting distinct mechanisms for recoding in the two kingdoms. We have identified and characterized the first eukaryotic selenocysteyl-tRNA-specific elongation factor. This factor forms a complex with mammalian SECIS binding protein 2, and these two components function together in selenocysteine incorporation in mammalian cells. Expression of the two functional domains of the bacterial elongation factor–SECIS binding protein as two separate proteins in eukaryotes suggests a mechanism for rapid exchange of charged for uncharged selenocysteyl-tRNA–elongation factor complex, allowing a single SECIS element to serve multiple UGA codons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号