首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   16篇
  138篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   14篇
  2010年   5篇
  2009年   1篇
  2008年   10篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1992年   1篇
  1991年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1972年   2篇
  1964年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1953年   1篇
  1946年   1篇
  1928年   2篇
  1923年   1篇
  1917年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
71.
Numerous, varied, and widespread taxa have an internal circadian clock that allows anticipation of rhythmic changes in the environment. We have identified XAP5 CIRCADIAN TIMEKEEPER (XCT), an Arabidopsis thaliana gene important for light regulation of the circadian clock and photomorphogenesis. XCT is essential for proper clock function: xct mutants display a shortened circadian period in all conditions tested. Interestingly, XCT plays opposite roles in plant responses to light depending both on trait and wavelength. The clock in xct plants is hypersensitive to red but shows normal responses to blue light. By contrast, inhibition of hypocotyl elongation in xct is hyposensitive to red light but hypersensitive to blue light. Finally, XCT is important for ribulose-1,5-bisphosphate carboxylase/oxygenase production and plant greening in response to light. This novel combination of phenotypes suggests XCT may play a global role in coordinating growth in response to the light environment. XCT contains a XAP5 domain and is well conserved across diverse taxa, suggesting it has a common function in higher eukaryotes. Downregulation of the XCT ortholog in Caenorhabditis elegans is lethal, suggesting that studies in Arabidopsis may be instrumental to understanding the biochemical activity of XCT.  相似文献   
72.
Recent evidence suggests that deep-sea vestimentiferan tube worms acquire their endosymbiotic bacteria from the environment each generation; thus, free-living symbionts should exist. Here, free-living tube worm symbiont phylotypes were detected in vent seawater and in biofilms at multiple deep-sea vent habitats by PCR amplification, DNA sequence analysis, and fluorescence in situ hybridization. These findings support environmental transmission as a means of symbiont acquisition for deep-sea tube worms.  相似文献   
73.
74.
Antiphospholipid (aPL) syndrome (APS) is characterized by thromboembolic events, thrombocytopenia, or recurrent miscarriage associated with aPL Abs with specificity for beta2-glycoprotein-I (beta2GPI). We recently reported that at least 44% of patients with the APS possess circulating type 1 (Th1) CD4+ T cells that proliferate and secrete IFN-gamma when stimulated with beta2GPI in vitro. In this study, we show that stimulation of PBMCs from 20 APS patients with beta2GPI induced substantial monocyte tissue factor (TF) (80 +/- 11 TF stimulation index (TF-SI)), whereas no induction was observed using PBMCs from 13 patients with aPL Abs without APS (6 +/- 1 TF-SI) or 7 normal and 7 autoimmune controls (5 +/- 1 and 3 +/- 1 TF-SI, respectively) (p < 0.0001). TF induction on monocytes by beta2GPI was dose dependent and required CD4+ T lymphocytes and class II MHC molecules. Because monocyte TF induction by beta2GPI was observed in all patients with APS, but not in any patient with aPL Abs without APS, this response is a potentially useful predictor for APS in patients with aPL Abs, as well as providing mechanistic insight into thrombosis and fetal loss in these patients.  相似文献   
75.
Microarrays: determining the balance of cellular transcription   总被引:3,自引:0,他引:3       下载免费PDF全文
Harmer SL  Kay SA 《The Plant cell》2000,12(5):613-616
  相似文献   
76.
Forward and reverse signaling mediated by EphB tyrosine kinase receptors and their transmembrane ephrin-B ligands play important roles in axon pathfinding, yet little is known about the intracellular pathways involved. Here we have used growth cones from the ventral (EphB receptor-bearing) and dorsal (ephrin-B-bearing) embryonic Xenopus retina to investigate the signaling mechanisms in both forward and reverse directions. We report that unclustered, but not clustered, EphB2 ectodomains trigger fast (5-10 min) transient collapse responses in growth cones. This collapse response is mediated by low levels of intracellular cyclic GMP and requires proteasome function. In contrast, clustered, but not unclustered, ephrin-B1 ectodomains cause slow (30-60 min) growth cone collapse that depends on high cGMP levels and is insensitive to inhibition of the proteasomal pathway. Upon receptor-ligand binding, endocytosis occurs in the reverse direction (EphB2-Fc into dorsal retinal growth cones), but not the forward direction, and is also sensitive to proteasomal inhibition. Endocytosis is functionally important because blocking of EphB2 internalization inhibits growth cone collapse. Our data reveal that distinct signaling mechanisms exist for B-type Eph/ephrin-mediated growth cone guidance and suggest that endocytosis provides a fast mechanism for switching off signaling in the reverse direction.  相似文献   
77.
Modern systems biology permits the study of complex networks, such as circadian clocks, and the use of complex methodologies, such as quantitative genetics. However, it is difficult to combine these approaches due to factorial expansion in experiments when networks are examined using complex methods. We developed a genomic quantitative genetic approach to overcome this problem, allowing us to examine the function(s) of the plant circadian clock in different populations derived from natural accessions. Using existing microarray data, we defined 24 circadian time phase groups (i.e., groups of genes with peak phases of expression at particular times of day). These groups were used to examine natural variation in circadian clock function using existing single time point microarray experiments from a recombinant inbred line population. We identified naturally variable loci that altered circadian clock outputs and linked these circadian quantitative trait loci to preexisting metabolomics quantitative trait loci, thereby identifying possible links between clock function and metabolism. Using single-gene isogenic lines, we found that circadian clock output was altered by natural variation in Arabidopsis thaliana secondary metabolism. Specifically, genetic manipulation of a secondary metabolic enzyme led to altered free-running rhythms. This represents a unique and valuable approach to the study of complex networks using quantitative genetics.  相似文献   
78.
The bacterial insertion sequence (IS) IS26 mobilizes and disseminates antibiotic resistance genes. It differs from bacterial IS that have been studied to date as it exclusively forms cointegrates via either a copy-in (replicative) or a recently discovered targeted conservative mode. To investigate how the Tnp26 transposase recognizes the 14-bp terminal inverted repeats (TIRs) that bound the IS, amino acids in two domains in the N-terminal (amino acids M1–P56) region were replaced. These changes substantially reduced cointegration in both modes. Tnp26 was purified as a maltose-binding fusion protein and shown to bind specifically to dsDNA fragments that included an IS26 TIR. However, Tnp26 with an R49A or a W50A substitution in helix 3 of a predicted trihelical helix–turn–helix domain (amino acids I13–R53) or an F4A or F9A substitution replacing the conserved amino acids in a unique disordered N-terminal domain (amino acids M1–D12) did not bind. The N-terminal M1–P56 fragment also bound to the TIR but only at substantially higher concentrations, indicating that other parts of Tnp26 enhance the binding affinity. The binding site was confined to the internal part of the TIR, and a G to T nucleotide substitution in the TGT at positions 6 to 8 of the TIR that is conserved in most IS26 family members abolished binding of both Tnp26 (M1–M234) and Tnp26 M1–P56 fragment. These findings indicate that the helix–turn–helix and disordered domains of Tnp26 play a role in Tnp26–TIR complex formation. Both domains are conserved in all members of the IS26 family.  相似文献   
79.
80.

Background

Sleep restriction is associated with development of metabolic ill-health, and hormonal mechanisms may underlie these effects. The aim of this study was to determine the impact of short term sleep restriction on male health, particularly glucose metabolism, by examining adrenocorticotropic hormone (ACTH), cortisol, glucose, insulin, triglycerides, leptin, testosterone, and sex hormone binding globulin (SHBG).

Methodology/Principal Findings

N = 14 healthy men (aged 27.4±3.8, BMI 23.5±2.9) underwent a laboratory-based sleep restriction protocol consisting of 2 baseline nights of 10 h time in bed (TIB) (B1, B2; 22:00–08:00), followed by 5 nights of 4 h TIB (SR1–SR5; 04:00–08:00) and a recovery night of 10 h TIB (R1; 22:00–08:00). Subjects were allowed to move freely inside the laboratory; no strenuous activity was permitted during the study. Food intake was controlled, with subjects consuming an average 2000 kcal/day. Blood was sampled through an indwelling catheter on B1 and SR5, at 09:00 (fasting) and then every 2 hours from 10:00–20:00. On SR5 relative to B1, glucose (F 1,168 = 25.3, p<0.001) and insulin (F 1,168 = 12.2, p<0.001) were increased, triglycerides (F 1,168 = 7.5, p = 0.007) fell and there was no significant change in fasting homeostatic model assessment (HOMA) determined insulin resistance (F 1,168 = 1.3, p = 0.18). Also, cortisol (F 1,168 = 10.2, p = 0.002) and leptin (F 1,168 = 10.7, p = 0.001) increased, sex hormone binding globulin (F 1,167 = 12.1, p<0.001) fell and there were no significant changes in ACTH (F 1,168 = 0.3, p = 0.59) or total testosterone (F 1,168 = 2.8, p = 0.089).

Conclusions/Significance

Sleep restriction impaired glucose, but improved lipid metabolism. This was associated with an increase in afternoon cortisol, without significant changes in ACTH, suggesting enhanced adrenal reactivity. Increased cortisol and reduced sex hormone binding globulin (SHBG) are both consistent with development of insulin resistance, although hepatic insulin resistance calculated from fasting HOMA did not change significantly. Short term sleep curtailment leads to changes in glucose metabolism and adrenal reactivity, which when experienced repeatedly may increase the risk for type 2 diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号