首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   24篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   18篇
  2014年   30篇
  2013年   14篇
  2012年   19篇
  2011年   21篇
  2010年   9篇
  2009年   10篇
  2008年   14篇
  2007年   16篇
  2006年   5篇
  2005年   13篇
  2004年   6篇
  2003年   5篇
  2002年   12篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1996年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1984年   3篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   4篇
  1969年   3篇
  1968年   5篇
  1967年   1篇
  1964年   1篇
  1963年   3篇
  1960年   2篇
  1959年   1篇
  1951年   1篇
  1931年   2篇
排序方式: 共有295条查询结果,搜索用时 234 毫秒
91.
92.
Phosphatidylinositol-5-phosphate 4-kinase, type II, beta (PIP5K2B) is linked to the pathogenesis of obesity, insulin resistance and diabetes. Here, we describe the identification of a novel pyrimidine-2,4-diamine PIP5K2B inhibitor, designated SAR088. The compound was identified by high-throughput screening and subsequently characterized in vitro and in vivo. SAR088 showed reasonable potency, selectivity and physicochemical properties in enzymatic and cellular assays. In vivo, SAR088 lowered blood glucose levels of obese and hyperglycemic male Zucker diabetic fatty rats treated for 3 weeks. Thus, SAR088 represents the first orally available and in vivo active PIP5K2B inhibitor and provides an excellent starting point for the development of potent and selective PIP5K2B inhibitors for the treatment of insulin resistance and diabetes.  相似文献   
93.
The protein kinase C γ (PKCγ) undergoes multistep activation and participates in various cellular processes in Purkinje cells. Perturbations in its phosphorylation state, conformation or localization can disrupt kinase signalling, such as in spinocerebellar ataxia type 14 (SCA14) that is caused by missense mutations in PRKCG encoding for PKCγ. We previously showed that SCA14 mutations enhance PKCγ membrane translocation upon stimulation owing to an altered protein conformation. As the faster translocation did not result in an increased function, we examined how SCA14 mutations induce this altered conformation of PKCγ and what the consequences of this conformational change are on PKCγ life cycle. Here, we show that SCA14‐related PKCγ‐V138E exhibits an exposed C‐terminus as shown by fluorescence resonance energy transfer‐fluorescence lifetime imaging microscopy in living cells, indicative of its partial unfolding. This conformational change was associated with faster phorbol 12‐myristate 13‐acetate‐induced translocation and accumulation of fully phosphorylated PKCγ in the insoluble fraction, which could be rescued by coexpressing PDK1 kinase that normally triggers PKCγ autophosphorylation. We propose that the SCA14 mutation V138E causes unfolding of the C1B domain and exposure of the C‐terminus of the PKCγ‐V138E molecule, resulting in a decrease of functional kinase in the soluble fraction.

  相似文献   

94.
Expanded polyglutamine (polyQ) stretches lead to protein aggregation and severe neurodegenerative diseases. A highly efficient suppressor of polyQ aggregation was identified, the DNAJB6, when molecular chaperones from the HSPH, HSPA, and DNAJ families were screened for huntingtin exon 1 aggregation in cells (Hageman et al. in Mol Cell 37(3):355–369, 2010). Furthermore, also aggregation of polyQ peptides expressed in cells was recently found to be efficiently suppressed by co-expression of DNAJB6 (Gillis et al. in J Biol Chem 288:17225–17237, 2013). These suppression effects can be due to an indirect effect of DNAJB6 on other cellular components or to a direct interaction between DNAJB6 and polyQ peptides that may depend on other cellular components. Here, we have purified the DNAJB6 protein to investigate the suppression mechanism. The purified DNAJB6 protein formed large heterogeneous oligomers, in contrast to the more canonical family member DNAJB1 which is dimeric. Purified DNAJB6 protein, at substoichiometric molar ratios, efficiently suppressed fibrillation of polyQ peptides with 45°Q in a thioflavin T fibrillation. No suppression was obtained with DNAJB1, but with the closest homologue to DNAJB6, DNAJB8. The suppression effect was independent of HSPA1 and ATP. These data, based on purified proteins and controlled fibrillation in vitro, strongly suggest that the fibrillation suppression is due to a direct protein–protein interaction between the polyQ peptides and DNAJB6 and that the DNAJB6 has unique fibrillation suppression properties lacking in DNAJB1. Together, the data obtained in cells and in vitro support the view that DNAJB6 is a peptide-binding chaperone that can interact with polyQ peptides that are incompletely degraded by and released from the proteasome.  相似文献   
95.
Electric Cell-substrate Impedance Sensing (ECIS) is an in vitro impedance measuring system to quantify the behavior of cells within adherent cell layers. To this end, cells are grown in special culture chambers on top of opposing, circular gold electrodes. A constant small alternating current is applied between the electrodes and the potential across is measured. The insulating properties of the cell membrane create a resistance towards the electrical current flow resulting in an increased electrical potential between the electrodes. Measuring cellular impedance in this manner allows the automated study of cell attachment, growth, morphology, function, and motility. Although the ECIS measurement itself is straightforward and easy to learn, the underlying theory is complex and selection of the right settings and correct analysis and interpretation of the data is not self-evident. Yet, a clear protocol describing the individual steps from the experimental design to preparation, realization, and analysis of the experiment is not available. In this article the basic measurement principle as well as possible applications, experimental considerations, advantages and limitations of the ECIS system are discussed. A guide is provided for the study of cell attachment, spreading and proliferation; quantification of cell behavior in a confluent layer, with regard to barrier function, cell motility, quality of cell-cell and cell-substrate adhesions; and quantification of wound healing and cellular responses to vasoactive stimuli. Representative results are discussed based on human microvascular (MVEC) and human umbilical vein endothelial cells (HUVEC), but are applicable to all adherent growing cells.  相似文献   
96.
97.
In everyday life contexts and work settings, monetary rewards are often contingent on future performance. Based on research showing that the anticipation of rewards causes improved task performance through enhanced task preparation, the present study tested the hypothesis that the promise of monetary rewards for future performance would not only increase future performance, but also performance on an unrewarded intermediate task. Participants performed an auditory Simon task in which they responded to two consecutive tones. While participants could earn high vs. low monetary rewards for fast responses to every second tone, their responses to the first tone were not rewarded. Moreover, we compared performance under conditions in which reward information could prompt strategic performance adjustments (i.e., when reward information was presented for a relatively long duration) to conditions preventing strategic performance adjustments (i.e., when reward information was presented very briefly). Results showed that high (vs. low) rewards sped up both rewarded and intermediate, unrewarded responses, and the effect was independent of the duration of reward presentation. Moreover, long presentation led to a speed-accuracy trade-off for both rewarded and unrewarded tones, whereas short presentation sped up responses to rewarded and unrewarded tones without this trade-off. These results suggest that high rewards for future performance boost intermediate performance due to enhanced task preparation, and they do so regardless whether people respond to rewards in a strategic or non-strategic manner.  相似文献   
98.
Although initially somewhat ignored, recent studies have now clearly established that the diverse members of the human family of small HSPs (HSPB1-HSPB10) play crucial roles in a wide range of cell types to maintain the integrity and function of tissues, in particular that of nervous and muscular tissue. The 10 human HSPBs clearly have overlapping and non-overlapping functional characteristics. Their ability to self- and hetero-oligomerise provides the cells with a large array of potentially different, specific functions. Single HSPB members can have a multitude of functions (moonlighting) and act on different "clients", thus affecting a wide range of different processes or structures that can ultimately affect the rate of aging of tissues and entire organisms. This is underscored by the findings that some inherited diseases involve mutations in several HSPB members that cause premature (mostly muscle and neuronal) tissue degeneration. Inversely, cancer cell resistance to different anticancer therapies is associated with elevated expression of several HSPBs. Still, many unanswered questions exist about the precise functioning of HSPBs, their collaboration with other HSPB members as well as their functions within the entire cellular chaperone network. Also, better insight in the regulation of expression of the various members and how their function is modulated post-translationally is needed. Such may be crucially important to develop means to intervene with their function for therapeutic purposes, which would require functional down-regulation in cancer but up-regulation in, for instance, cardiac or degenerative neuro/neuromuscular diseases. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.  相似文献   
99.
100.
For analyzing protein function, protein dynamics, or protein–protein interactions, the use of chimeric proteins has become an indispensable tool. The generation of DNA constructs coding for such fused proteins can, however, be a tedious process. Currently used strategies often make use of available endonuclease sites, leading to limitations in the choice of the site of fusion between two genes and problems in maintaining protein secondary structure. We have developed a cloning strategy to get around these disadvantages that is based on a single round of PCR amplification followed by antibiotic-resistant gene complementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号