首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   24篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   18篇
  2014年   30篇
  2013年   14篇
  2012年   19篇
  2011年   21篇
  2010年   9篇
  2009年   10篇
  2008年   14篇
  2007年   16篇
  2006年   5篇
  2005年   13篇
  2004年   6篇
  2003年   5篇
  2002年   12篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1996年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1984年   3篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   4篇
  1969年   3篇
  1968年   5篇
  1967年   1篇
  1964年   1篇
  1963年   3篇
  1960年   2篇
  1959年   1篇
  1951年   1篇
  1931年   2篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
51.
Birds’ beaks play a key role in foraging, and most research on their size and shape has focused on this function. Recent findings suggest that beaks may also be important for thermoregulation, and this may drive morphological evolution as predicted by Allen's rule. However, the role of thermoregulation in the evolution of beak size across species remains largely unexplored. In particular, it remains unclear whether the need for retaining heat in the winter or dissipating heat in the summer plays the greater role in selection for beak size. Comparative studies are needed to evaluate the relative importance of these functions in beak size evolution. We addressed this question in a clade of birds exhibiting wide variation in their climatic niche: the Australasian honeyeaters and allies (Meliphagoidea). Across 158 species, we compared species’ climatic conditions extracted from their ranges to beak size measurements in a combined spatial‐phylogenetic framework. We found that winter minimum temperature was positively correlated with beak size, while summer maximum temperature was not. This suggests that while diet and foraging behavior may drive evolutionary changes in beak shape, changes in beak size can also be explained by the beak's role in thermoregulation, and winter heat retention in particular.  相似文献   
52.
Aim Taxocenes are regulated by different kinds of predictors, but can broad‐scale patterns of prokaryotes (bacteria) and eukaryotes (such as fungi and invertebrates) be ascribed to soil acidity? We sought to test for relationships between the numerical abundances of bacteria, microfungi, nematodes and arthropods along a pH gradient. Location 284 agro‐ecosystems on Pleistocene sand across the Netherlands. Methods Generalized Linear Models (GLM) and stepwise regressions were applied, using soil‐ and leaf‐litter organisms sampled from a land‐cover network. Results The major variation in the numerical abundance of the organisms belonging to the investigated taxocenes could be ascribed to soil acidity. Contrary to expectations, the effects of temperature on numerical abundance were significant only for Fungi and Nematoda (P < 0.0001). Geographical co‐ordinates always play a minor role. The often‐suggested close correlation between the numerical abundance of eukaryotes and their local taxonomic diversity applied only to Arthropoda and Fungi (P < 0.00001). Only the number of bacterial DNA bands seemed to reflect the taxa–area relationship (F‐value = 22.45, P < 0.0001). Main conclusions There were strong relationships between the numerical abundances of all the investigated taxocenes and the field‐measured soil acidity (P < 0.0001). The largest effects were detected in the Fungi, which tended to be much more acid‐tolerant than Bacteria. These patterns imply ecological shifts in the detrital soil food web and deserve further investigation.  相似文献   
53.
Focal accumulations of mononuclear cells in the arterial wall of healthy humans at predilection sites for atherosclerotic lesions have been described as 'vascular-associated lymphoid tissue' (VALT). Here we investigated whether pigs (Sus scrofa), a commonly used animal model for studying cardiovascular disease, have VALT. Samples of major arteries were collected from 10 conventional crossbred pigs (age, 2 to 24 mo) and processed for routine light microscopy, immunohistochemistry, and immunofluorescence. Single or small aggregates of mononuclear cells were noted in the intima and occasionally the inner portion of the tunica media and adventitia at branching sites. The infiltrating cells were primarily CD3+CD4+ T cells, with some macrophages. No CD8+ T cells were present. Infiltrating leukocytes and overlying endothelial cells frequently expressed major histocompatibility class II molecules. Two Ossabaw pigs on low-fat diet had similar leukocytic aggregates at locations where animals of the same breed but fed a high-fat and high-cholesterol diet developed atherosclerotic lesions. Further, the densities of CD3+ T lymphocytes and in these areas were decreased in 2 sedentary and 2 exercised Ossabaw pigs on an atherogenic diet compared with conventional crossbred and Ossabaw pigs on a normal diet. This study shows that focal aggregates of lymphocytes occur in the vasculature of pigs at locations predisposed to development of atherosclerotic lesions. These cellular aggregates are similar to the structures described as VALT in human arteries and reinforce the value of the pig as a model for the study of human cardiovascular disease.  相似文献   
54.
55.
C2H2 zinc fingers (C2H2-ZFs) are the most prevalent type of vertebrate DNA-binding domain, and typically appear in tandem arrays (ZFAs), with sequential C2H2-ZFs each contacting three (or more) sequential bases. C2H2-ZFs can be assembled in a modular fashion, providing one explanation for their remarkable evolutionary success. Given a set of modules with defined three-base specificities, modular assembly also presents a way to construct artificial proteins with specific DNA-binding preferences. However, a recent survey of a large number of three-finger ZFAs engineered by modular assembly reported high failure rates (~70%), casting doubt on the generality of modular assembly. Here, we used protein-binding microarrays to analyze 28 ZFAs that failed in the aforementioned study. Most (17) preferred specific sequences, which in all but one case resembled the intended target sequence. Like natural ZFAs, the engineered ZFAs typically yielded degenerate motifs, binding dozens to hundreds of related individual sequences. Thus, the failure of these proteins in previous assays is not due to lack of sequence-specific DNA-binding activity. Our findings underscore the relevance of individual C2H2-ZF sequence specificities within tandem arrays, and support the general ability of modular assembly to produce ZFAs with sequence-specific DNA-binding activity.  相似文献   
56.
Humans contain many HSP (heat-shock protein) 70/HSPA- and HSP40/DNAJ-encoding genes and most of the corresponding proteins are localized in the cytosol. To test for possible functional differences and/or substrate specificity, we assessed the effect of overexpression of each of these HSPs on refolding of heat-denatured luciferase and on the suppression of aggregation of a non-foldable polyQ (polyglutamine)-expanded Huntingtin fragment. Overexpressed chaperones that suppressed polyQ aggregation were found not to be able to stimulate luciferase refolding. Inversely, chaperones that supported luciferase refolding were poor suppressors of polyQ aggregation. This was not related to client specificity itself, as the polyQ aggregation inhibitors often also suppressed heat-induced aggregation of luciferase. Surprisingly, the exclusively heat-inducible HSPA6 lacks both luciferase refolding and polyQ aggregation-suppressing activities. Furthermore, whereas overexpression of HSPA1A protected cells from heat-induced cell death, overexpression of HSPA6 did not. Inversely, siRNA (small interfering RNA)-mediated blocking of HSPA6 did not impair the development of heat-induced thermotolerance. Yet, HSPA6 has a functional substrate-binding domain and possesses intrinsic ATPase activity that is as high as that of the canonical HSPA1A when stimulated by J-proteins. In vitro data suggest that this may be relevant to substrate specificity, as purified HSPA6 could not chaperone heat-unfolded luciferase but was able to assist in reactivation of heat-unfolded p53. So, even within the highly sequence-conserved HSPA family, functional differentiation is larger than expected, with HSPA6 being an extreme example that may have evolved to maintain specific critical functions under conditions of severe stress.  相似文献   
57.
Many brain diseases involve activation of resident and peripheral immune cells to clear damaged and dying neurons. Which immune cells respond in what way to cues related to brain disease, however, remains poorly understood. To elucidate these in vivo immunological events in response to brain cell death we used genetically targeted cell ablation in zebrafish. Using intravital microscopy and large-scale electron microscopy, we defined the kinetics and nature of immune responses immediately following injury. Initially, clearance of dead cells occurs by mononuclear phagocytes, including resident microglia and macrophages of peripheral origin, whereas amoeboid microglia are exclusively involved at a later stage. Granulocytes, on the other hand, do not migrate towards the injury. Remarkably, following clearance, phagocyte numbers decrease, partly by phagocyte cell death and subsequent engulfment of phagocyte corpses by microglia. Here, we identify differential temporal involvement of microglia and peripheral macrophages in clearance of dead cells in the brain, revealing the chronological sequence of events in neuroinflammatory resolution. Remarkably, recruited phagocytes undergo cell death and are engulfed by microglia. Because adult zebrafish treated at the larval stage lack signs of pathology, it is likely that this mode of resolving immune responses in brain contributes to full tissue recovery. Therefore, these findings suggest that control of such immune cell behavior could benefit recovery from neuronal damage.KEY WORDS: Brain, Intravital microscopy, Leukocytes, Microglia, Neurodegeneration, Zebrafish  相似文献   
58.
Surface moisture is an important supply limiting factor for aeolian sand transport, which is the primary driver of coastal dune development. As such, it is critical to account for the control of surface moisture on available sand for dune building. Optical remote sensing has the potential to measure surface moisture at a high spatio-temporal resolution. It is based on the principle that wet sand appears darker than dry sand: it is less reflective. The goals of this study are (1) to measure and model reflectance under controlled laboratory conditions as function of wavelength () and surface moisture () over the optical domain of 350–2500 nm, and (2) to explore the implications of our laboratory findings for accurately mapping the distribution of surface moisture under natural conditions. A laboratory spectroscopy experiment was conducted to measure spectral reflectance (1 nm interval) under different surface moisture conditions using beach sand. A non-linear increase of reflectance upon drying was observed over the full range of wavelengths. Two models were developed and tested. The first model is grounded in optics and describes the proportional contribution of scattering and absorption of light by pore water in an unsaturated sand matrix. The second model is grounded in soil physics and links the hydraulic behaviour of pore water in an unsaturated sand matrix to its optical properties. The optical model performed well for volumetric moisture content 24% ( 0.97), but underestimated reflectance for between 24–30% ( 0.92), most notable around the 1940 nm water absorption peak. The soil-physical model performed very well ( 0.99) but is limited to 4% 24%. Results from a field experiment show that a short-wave infrared terrestrial laser scanner ( = 1550 nm) can accurately relate surface moisture to reflectance (standard error 2.6%), demonstrating its potential to derive spatially extensive surface moisture maps of a natural coastal beach.  相似文献   
59.

Background

There is increasing evidence that chronic inflammation is an important determinant in insulin resistance and in the pathogenesis of type 2 diabetes (T2D). MicroRNAs constitute a newly discovered system of cell regulation and in particular two microRNAs (miR-146a and miR-155) have been described as regulators and biomarkers of inflammation.

Aim

To determine a putative association between the levels of miR-146a and miR-155 in serum of T2D patients, clinical parameters and serological indicators of inflammation.

Methods

We performed quantitative Real Time PCR (qPCR) of microRNAs from serum (56 Ecuadorian T2D ambulatory patients and 40 non-diabetic controls). In addition, we evaluated T2D-related serum cytokines.chemokines and growth factors using a commercially available multi-analyte cytometric bead array system. We correlated outcomes to clinical parameters, including BMI, HbA1c and lipid state.

Results

The Ecuadorian non-diabetic controls appeared as overweight (BMI>25: patients 85%, controls 82.5%) and as dyslipidemic (hypercholesterolemia: patients 60.7%, controls 67.5%) as the patients.
  • The serum levels of miR-146a were significantly reduced in T2D patients as compared to these non-diabetic, but obese/dyslipidemic control group (mean patients 0.61, mean controls set at 1; p = 0.042), those of miR-155 were normal.
  • The serum levels of both microRNAs correlated to each other (r = 0.478; p<0.001) and to leptin levels. The microRNAs did not correlate to BMI, glycemia and dyslipidemia.
  • From the tested cytokines, chemokines and growth factors, we found IL-8 and HGF significantly raised in T2D patients versus non-diabetic controls (p = 0.011 and 0.023 respectively).

Conclusions

This study shows decreased serum anti-inflammatory miR-146a, increased pro-inflammatory IL-8 and increased HGF (a vascular/insular repair factor) as discriminating markers of failure of glucose control occurring on the background of obesity and dyslipidemia.  相似文献   
60.
Summary A phage HP1, infecting transformable cells ofHaemophilus influenzae Rd, has been isolated. The general properties of the wild type and of a clear plaquemutantc1 employed for most of the experiments are described. Phage DNA is infective for transformableHaemophilus cells with an efficiency (plaqueforming units of the original phage recovered as DNA-infected cells) of up to 6×10–3. The competence ofHaemophilus cells for infection with phage DNA parallels the competence for transformation with bacterial DNA.Both HP1 and thec1 mutant are able to lysogenize their host, and the lysogenic cells are readily induced by UV. Competent non-lysogenicHaemophilus cells can be infected by DNA of lysogenic cells, thereby giving rise to phage progeny. Thus, the phage genetic material can be introduced into competentHaemophilus cells in three different ways: injection from intact phage, and infection with either phage DNA or with bacterial DNA carrying the prophage.The UV inactivation curves for infectious phage DNA and for complete phages are similar, both indicating the occurrance of host-cell reactivation. Photoreactivationin vitro of infectious phage DNA takes place to about the same high extent as observed with bacterial transforming DNA.The usefulness of this system for investigating bacterial transformation and biological effects ofin vitro treatment of DNA is discussed.with the technical assistance ofSandra J. Antoine With 4 Figures in the TextPreliminary report presented at the 7th Annual Bacterial Transformation Meeting, Aspen, Colorado, June 17–19, 1963.Supported by a travel grant from the Deutsche Forschungsgemeinschaft.Supported by Research Carreer Development Award GM-K3-7500 and Research Grant RH 00221 from the U.S. Public Health Service.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号