首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   29篇
  345篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   20篇
  2014年   30篇
  2013年   20篇
  2012年   21篇
  2011年   23篇
  2010年   13篇
  2009年   11篇
  2008年   15篇
  2007年   16篇
  2006年   9篇
  2005年   15篇
  2004年   7篇
  2003年   5篇
  2002年   12篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   9篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   5篇
  1974年   2篇
  1973年   2篇
  1970年   4篇
  1969年   3篇
  1968年   5篇
  1963年   3篇
  1960年   2篇
  1931年   2篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
91.
92.
Peptides presented by human leukocyte antigen (HLA) molecules on the cell surface play a crucial role in adaptive immunology, mediating the communication between T cells and antigen presenting cells. Knowledge of these peptides is of pivotal importance in fundamental studies of T cell action and in cellular immunotherapy and transplantation. In this paper we present the in-depth identification and relative quantification of 14,500 peptide ligands constituting the HLA ligandome of B cells. This large number of identified ligands provides general insight into the presented peptide repertoire and antigen presentation. Our uniquely large set of HLA ligands allowed us to characterize in detail the peptides constituting the ligandome in terms of relative abundance, peptide length distribution, physicochemical properties, binding affinity to the HLA molecule, and presence of post-translational modifications. The presented B-lymphocyte ligandome is shown to be a rich source of information by the presence of minor histocompatibility antigens, virus-derived epitopes, and post-translationally modified HLA ligands, and it can be a good starting point for solving a wealth of specific immunological questions. These HLA ligands can form the basis for reversed immunology approaches to identify T cell epitopes based not on in silico predictions but on the bona fide eluted HLA ligandome.Peptides presented by human leukocyte antigen (HLA)1 molecules on the cell surface play a crucial role in immunology and mediate the communication between T cells and antigen presenting cells. Knowledge of these peptides is of pivotal importance in fundamental studies of T cell action, the design of T-cell-mediated therapies such as tumor immunotherapy (1), and the treatment of hematological malignancies through a combination of hematopoietic stem cell transplantation and donor lymphocyte infusion (2). In addition, T cells can play an important role in organ rejection following transplantation.The presented HLA class I ligands are the products of the intracellular processing machinery, with its continuous cycle of protein synthesis and degradation (3). Much is known about the proteins involved in antigen processing, but high fidelity ligand/epitope predictions are at present not possible. The discovery of additional involved enzymes (3, 4) and the exciting discovery of peptide splicing (5) have shown that antigen processing is even more complex than was previously thought. Moreover, gene expression studies have shown many nonstandard, unexpected protein products, including the production of antigens derived from aberrant protein fragments as a result of expression in alternative reading frames (6). Several studies report the identification of HLA ligands (710). Many results have been collected and discussed in a recent review on the large-scale analysis of HLA class I ligands (11). Collectively, these reports illustrate the need for in-depth elucidation of the HLA ligandome.Elucidation of T cell epitopes has traditionally been achieved with the use of a forward immunological approach, as pioneered by Hunt and coworkers (12, 13). In this approach, the cognate peptide of T cells with the appropriate activity profile is elucidated via repeated rounds of chromatographic separation in combination with T cell recognition assays. Because T cells are not always available from the start, reverse immunological approaches (1417) have been developed to predict T cell epitopes through a combination of bioinformatics and in vitro proteasome digests. Predicted epitopes are synthesized and tested for their capability to activate T cells. The main disadvantage of this approach is that less than 0.1% of the peptides that survive intracellular processing are presented on HLA class I molecules (3).Therefore, we developed a large-scale peptidomics approach that is a reverse immunology approach based not on algorithms but on the bona fide eluted ligandome, which means that the identified peptides are known to have survived processing and are bona fide HLA ligands. Once the ligandome has been identified as comprehensively as possible, T cells can subsequently be selected on the basis of the immunological question at hand, as will be illustrated in a separate paper.2 The development of MHC exchange tetramers for finding relevant T cell epitopes is instrumental to this approach (18, 19).To improve ligandome coverage, we applied and compared three off-line first dimension separation techniques, followed by on-line nano-HPLC-tandem MS.The tandem mass spectra were interrogated by being matched against the International Protein Index (IPI) human database (20). In a second step, post-translation modifications (phosphorylation, cysteinylation) were allowed in the database search. In a third step, the tandem mass spectra were matched against a newly in-house developed database for the optimal identification of polymorphic ligands to find potential minor histocompatibility antigens (21). This led to the identification of ∼14,000 HLA class I ligands, the majority of which also were relatively quantitated. Next, we analyzed the peptides constituting our ligandome in as much detail as possible to confirm the correct identification of the vast majority of the ligands. We achieved this through a combination of several physicochemical and biological checks and comparison with existing ligand and epitope databases.Finally, as an additional quality check, we illustrated the functional relevance of the ligandome through the identification of both previously known and new minor histocompatibility antigens, virus-derived epitopes, and post-translationally modified HLA ligands (phosphorylated ligands and cysteinylated ligands) (2224). This is the largest ligandome reported to date, and it allows general insight into the presented peptide repertoire. This study supports the building of the “immunopeptidome” as has recently been suggested (25). A proteomics approach can be used as a starting point for contributions to immunology by providing a peptidome landscape in many immunological studies, both fundamental and applied.  相似文献   
93.
94.
ABSTRACT

The acoustic characteristics of an Amazonian lowland rain forest study site in southern Venezuela was analysed to determine environmental constraints upon acoustic communication. Signal degradation was measured by conducting transmission experiments at different heights above ground level. Measurements of ambient noise served to determine possible communication distances for various times of day, heights above ground level and frequencies. “Sound windows” for acoustic long-range communication were found for low frequencies, calling heights in the midstorey and calling in the morning or during the night. Sound attenuation was affected by height and frequency but not by time of day. Background noise varied remarkably with time of day and frequency and had a greater impact on communication distance than signal attenuation.  相似文献   
95.
Although initially somewhat ignored, recent studies have now clearly established that the diverse members of the human family of small HSPs (HSPB1-HSPB10) play crucial roles in a wide range of cell types to maintain the integrity and function of tissues, in particular that of nervous and muscular tissue. The 10 human HSPBs clearly have overlapping and non-overlapping functional characteristics. Their ability to self- and hetero-oligomerise provides the cells with a large array of potentially different, specific functions. Single HSPB members can have a multitude of functions (moonlighting) and act on different "clients", thus affecting a wide range of different processes or structures that can ultimately affect the rate of aging of tissues and entire organisms. This is underscored by the findings that some inherited diseases involve mutations in several HSPB members that cause premature (mostly muscle and neuronal) tissue degeneration. Inversely, cancer cell resistance to different anticancer therapies is associated with elevated expression of several HSPBs. Still, many unanswered questions exist about the precise functioning of HSPBs, their collaboration with other HSPB members as well as their functions within the entire cellular chaperone network. Also, better insight in the regulation of expression of the various members and how their function is modulated post-translationally is needed. Such may be crucially important to develop means to intervene with their function for therapeutic purposes, which would require functional down-regulation in cancer but up-regulation in, for instance, cardiac or degenerative neuro/neuromuscular diseases. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.  相似文献   
96.
Because of land reclamation, reinforcement of dikes, and the deepening of shipping channels, large areas of tidal marshes have been removed or eroded from the Scheldt estuary during the last two centuries. Tidal wetland restoration contributes toward compensating this loss of habitat. Not all restoration projects are meticulously planned, however; some are forced by nature. During a severe storm in 1990, a dike was breached in the brackish part of the Scheldt estuary and returned tidal influence to the Sieperda polder. In the 10 years since the dike breach, the former polder has changed into a brackish tidal marsh. Here we report on the geomorphologic and ecological developments that have taken place in the marsh. Tidal intrusion into the former polder turned crop fields into mudflats and changed pastures into salty marsh vegetation. The digging of a new creek improved marsh hydrology and enhanced tidal intrusion further into the marsh. Macrofauna typical of estuarine mudflats established rapidly in the developing marsh. Vegetation succession took place rapidly. Within 5 years, large areas of mudflats became covered with marsh vegetation. Birds characteristic of salt marshes were observed breeding or seen foraging in the marsh. The number of wading birds declined as areas of mudflat became overgrown. It is demonstrated that tidal flow is the engine to tidal marsh restoration. Tidal influence caused geomorphologic changes, which directed ecological developments in the former polder.  相似文献   
97.
Tryptic digestion followed by identification using mass spectrometry is an important step in many proteomic studies. Here, we describe the preparation of immobilized, acetylated trypsin for enhanced digestion efficacy in integrated protein analysis platforms. Complete digestion of cytochrome c was obtained with two types of modified-trypsin beads with a contact time of only 4 s, while corresponding unmodified-trypsin beads gave only incomplete digestion. The digestion rate of myoglobin, a protein known to be rather resistant to proteolysis, was not altered by acetylating trypsin and required a buffer containing 35% acetonitrile to obtain complete digestion. The use of acetylated-trypsin beads led to fewer interfering tryptic autolysis products, indicating an increased stability of this modified enzyme. Importantly, the modification did not affect trypsin's substrate specificity, as the peptide map of myoglobin was not altered upon acetylation of immobilized trypsin. Kinetic digestion experiments in solution with low-molecular-weight substrates and cytochrome c confirmed the increased catalytic efficiency (lower K(M) and higher k(cat)) and increased resistance to autolysis of trypsin upon acetylation. Enhancement of catalytic efficiency was correlated with the number of acetylations per molecule. The favorable properties of the new chemically modified trypsin reactor should make it a valuable tool in automated protein analysis systems.  相似文献   
98.
Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that hydrolyses phospholipids requiring Ca(2+) as cofactor. In vitro studies have shown that OMPLA is only active as a dimer. The structures of monomeric and dimeric OMPLA provided possible clues to the activation process. In the inhibited dimeric species calcium ions are located at the dimer interface ideally suited to stabilise the oxyanion intermediates formed during catalysis. The side chain hydroxyl function of Ser152 is one of the ligands of this interfacial calcium. In the crystal structure of monomeric OMPLA the interfacial calcium site is lacking, but calcium was found to bind at a site involving the carboxylates of Asp149 and Asp184. In the current study the relevance of the identified calcium sites has been studied by site-directed mutagenesis. The Ser152Asn variant confirmed the importance of the interfacial calcium site for catalysis, and also demonstrated that this site is essentially involved in the dimerisation process. Replacements of the ligands in monomeric OMPLA, i.e. Asp149Asn, Asp149Ala and Asp184Asn, only showed minor effects on catalytic activity and dimerisation. A stronger effect observed for the variant Asp184Ala was explained by the proximity of Asp184 to the catalytically important Ser152 residue. We propose that Asp149 and Asp184 provide an electronegative funnel that may facilitate Ca(2+) transfer to the interfacial calcium site.  相似文献   
99.
The chronic proliferative dermatitis (cpdm) mouse mutation was mapped to mouse Chromosome 15 using an intraspecific cross between C57BL/KaLawRij cpdm/cpdm and BALB/cJ mice. A second autosomal recessive mutation that resulted in a phenotype similar to that of cpdm arose spontaneously in a colony of OcB-3/Dem recombinant congenic mice. This new mutation was found to be allelic with cpdm. Therefore, the gene symbol for the allelic mutation is cpdmDem. The phenotype of these mutant mice consists of eosinophil-driven severe and progressive inflammatory changes in multiple organs including the skin and lungs.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号