首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   29篇
  2023年   8篇
  2022年   4篇
  2021年   13篇
  2020年   8篇
  2019年   5篇
  2018年   13篇
  2017年   10篇
  2016年   11篇
  2015年   26篇
  2014年   23篇
  2013年   33篇
  2012年   35篇
  2011年   30篇
  2010年   27篇
  2009年   20篇
  2008年   23篇
  2007年   38篇
  2006年   22篇
  2005年   26篇
  2004年   23篇
  2003年   16篇
  2002年   15篇
  2001年   3篇
  2000年   7篇
  1999年   2篇
  1998年   3篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   5篇
  1976年   4篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1967年   1篇
排序方式: 共有525条查询结果,搜索用时 171 毫秒
61.
In many neurodegenerative disorders that lead to memory loss and dementia, the brain pathology responsible for neuronal loss is marked by accumulations of proteins in the form of extracellular plaques and intracellular filamentous tangles, containing hyperphosphorylated cytoskeletal proteins. These are assumed to arise as a consequence of deregulation of a normal pattern of topographic phosphorylation-that is, an abnormal shift of cytoskeletal protein phosphorylation from the normal axonal compartment to cell bodies. Although decades of studies have been directed to this problem, biochemical approaches in mammalian systems are limited: neurons are too small to permit separation of cell body and axon compartments. Since the pioneering studies of Hodgkin and Huxley on the giant fiber system of the squid, however, the stellate ganglion and its giant axons have been the focus of a large literature on the physiology and biochemistry of neuron function. This review concentrates on a host of studies in our laboratory and others on the factors regulating compartment-specific patterns of cytoskeletal protein phosphorylation (primarily neurofilaments) in an effort to establish a normal baseline of information for further studies on neurodegeneration. On the basis of these data, a model of topographic regulation is proposed that offers several possibilities for further studies on potential sites of deregulation that may lead to pathologies resembling those seen in mammalian and human brains showing neurodegeneration, dementia, and neuronal cell death.  相似文献   
62.
A series of cobalt(III) mixed ligand complexes of type [Co(en)2L]+3, where L is bipyridine, 1,10-phenanthroline, imidazole, methylimidazole, ethyleimidazole, dimethylimidazole, urea, thiourea, acetamide, thioacetamide, semicarbazide, thiosemicarbazide, or pyrazole, have been isolated and characterized. The structural elucidation of these complexes has been explored by using absorption, infrared, and 1H NMR nuclear magnetic resonance spectral methods. The infrared spectral data of all these complexes exhibit a band at 1450/cm and 1560-1590/cm, which correspond to C=C and C=N, a band at 575/cm for Co-N (en), and a band at 480/cm for Co-L (ligand). All these complexes were found to be potent antimicrobial agents. The antibacterial activity was studied in detail in terms of zone inhibition, minimum bactericidal, and time period of lethal action. Among all, complexes bipyridine, 1,10-phenanthroline, dimethylimidazole, and pyrazole, possess the highest antibacterial activity. Antifungal activity was done by disc-diffusion assay and 50% inhibitory concentrations that possess high antifungal activity.  相似文献   
63.
Oxidative stress and mitochondrial damage are implicated in the evolution of neurodegenerative diseases. Increased oxidative damage in specific brain regions during aging might render the brain susceptible to degeneration. Previously, we demonstrated increased oxidative damage and lowered antioxidant function in substantia nigra during aging making it vulnerable to degeneration associated with Parkinson's disease. To understand whether aging contributes to the vulnerability of brain regions in Alzheimer's disease, we assessed the oxidant and antioxidant markers, glutathione (GSH) metabolic enzymes, glial fibrillary acidic protein (GFAP) expression and mitochondrial complex I (CI) activity in hippocampus (HC) and frontal cortex (FC) compared with cerebellum (CB) in human brains with increasing age (0.01-80 years). We observed significant increase in protein oxidation (HC: p = 0.01; FC: p = 0.0002) and protein nitration (HC: p = 0.001; FC: p = 0.02) and increased GFAP expression (HC: p = 0.03; FC: p = 0.001) with a decreasing trend in CI activity in HC and FC compared to CB with increasing age. These changes were associated with a decrease in antioxidant enzyme activities, such as superoxide dismutase (HC: p = 0.005), catalase (HC: p = 0.02), thioredoxin reductase (FC: p = 0.04), GSH reductase (GR) (HC: p = 0.005), glutathione-s-transferase (HC: p = 0.0001; FC: p = 0.03) and GSH (HC: p = 0.01) with age. However, these parameters were relatively unaltered in CB. We suggest that the regions HC and FC are subjected to widespread oxidative stress, loss of antioxidant function and enhanced GFAP expression during aging which might make them more susceptible to deranged physiology and selective neuronal degeneration.  相似文献   
64.
We have characterized a large-scale inactive-to-active conformational change in the activation-loop of the insulin receptor kinase domain at the atomistic level via untargeted temperature-accelerated molecular dynamics (TAMD) and free-energy calculations using the string method. TAMD simulations consistently show folding of the A-loop into a helical conformation followed by unfolding to an active conformation, causing the highly conserved DFG-motif (Asp(1150), Phe(1151), and Gly(1152)) to switch from the inactive "D-out/F-in" to the nucleotide-binding-competent "D-in/F-out" conformation. The minimum free-energy path computed from the string method preserves these helical intermediates along the inactive-to-active path, and the thermodynamic free-energy differences are consistent with previous work on various other kinases. The mechanisms revealed by TAMD also suggest that the regulatory spine can be dynamically assembled/disassembled either by DFG-flip or by movement of the αC-helix. Together, these findings both broaden our understanding of kinase activation and point to intermediates as specific therapeutic targets.  相似文献   
65.
Facile synthesis of natural α-noscapine analogue, 9-amino-α-noscapine, a potent inhibitor of tubulin polymerization for cancer therapy, is achieved via copper(I) iodide mediated in situ aromatic azidation and reduction of 9-bromo-α-noscapine (obtained by bromination of natural α-noscapine) with NaN(3) in DMSO at 130°C in the presence of L-proline as an amino acid promoter. The protocol developed here avoided isolation of 9-azido-α-noscapine and did not cleave the sensitive C-C bond between two heterocyclic phthalide and isoquinoline units.  相似文献   
66.
Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA20 and GA8, in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.Semidwarfism is a valuable trait in many crop species and agricultural environments. In cereal crops, it can result in decreased lodging, increased yield, and improved harvest index (Dalrymple, 1985; Hedden, 2003). Therefore, it was a critical foundation of the “Green Revolution” that resulted in large improvements of yield in wheat (Triticum aestivum) and rice (Oryza sativa; Hargrove and Cabanilla, 1979; Perovic et al., 2008). Semidwarfism has had substantial benefits for fruit tree production, where it enables earlier fruit bearing, higher yields, and easier harvests in orchards (Battisini and Battisini, 2005). Semidwarf woody species are also extensively used in ornamental horticulture, where they allow more compact forms to be fit into small areas around homes and on streets and reduce the need for pruning to avoid interference with structures and transmission lines (Busov et al., 2003).Although against the current orthodoxy of forest tree breeding, where height growth is emphasized, semidwarfism might also have benefits for wood and biomass production (Bradshaw and Strauss, 2001). Such trees could be useful if they were less prone to wind throw due to their shorter, stockier forms and expected greater allocation to roots. Reduced stature could also result in less bending and slanting of trunks in the face of wind and gravity on hillslopes and thus reduce the extent of reaction wood formation, which degrades the performance and value of solid wood and pulp products. Reduced height and increased allocation of growth to roots might enhance stress tolerance, soil nutrient uptake, bioremediation, and carbon sequestration.Semidwarfism can be achieved by the modification of several types of genes and physiological mechanisms, but the most prevalent and advanced forms in agriculture affect GAs or their signaling (for review, see Busov et al., 2008). GAs are endogenous plant hormones that influence several aspects of plant growth and development, including seed germination, leaf expansion, shoot growth, cell division, flower induction, and fruit development (Sun and Gubler, 2004; Fleet and Sun, 2005; Swain and Singh, 2005). With respect to shoot growth, the most obvious effect of GA is its promotion of stem elongation by stimulating both cell elongation and division (Marth et al., 1956). GA modification also has significant effects on plant biochemistry, changing the amounts and distribution of a wide variety of metabolites in shoots and roots (Rossetto et al., 2003; Chen et al., 2004; Busov et al., 2006).Little is known about how semidwarfism affects belowground growth. GA has been shown to play a controlling role in lateral root development (Gou et al., 2010), and GA and ethylene synergistically promote both the initiation and growth of adventitious roots (Osmont et al., 2007). In tomato (Solanum lycopersicum), isogenic GA-deficient mutants (gib) allocate more biomass to roots compared with shoots (Nagel et al., 2001). In poplar (Populus spp.), semidwarf transgenic plants grown in vitro had a lower shoot-to-root ratio, which was at least partly due to proliferation of lateral roots (Busov et al., 2006; Gou et al., 2010).As a domestication trait, semidwarfism has been proposed as a means for mitigating the spread of transgenic plants within and outside of crop environments (Al-Ahmad et al., 2005). The genetic dominance of most semidwarfism transgenes would cause reduced height growth in transgene-containing progeny, reducing their ability to compete for light. Moreover, because of the close linkage of the semidwarfism genes to other genes that were cointroduced on the same plasmid, they would also powerfully retard their spread or introgression, even in cases where the linked transgene would, on their own, impart a selective advantage. However, there have been very few plant species where this concept has been explicitly tested (Al-Ahmad and Gressel, 2006; Gressel and Valverde, 2009), and we know of no examples in woody or perennial plants.To study the effects of semidwarfism genes in a woody plant grown under field conditions, we inserted a number of dominant GA-modifying transgenes into hybrid poplar (Populus tremula × Populus alba), the widely recognized model woody plant for genomics and biotechnology (Herschbach and Kopriva, 2002; Brunner et al., 2004a; Tuskan et al., 2004). Most of the genes studied were overexpressed forms of GA 2-oxidase, GA-Insensitive (GAI), or Repressor of GAI-Like (RGL), all known to cause semidwarfism in other plant species. GA 2-oxidase is a major GA catabolic enzyme in plants, and GAI and RGL are negative regulators of the GA signal transduction pathway (Appleford et al., 2007; Busov et al., 2008). The transgenic trees were first analyzed in the greenhouse (Busov et al., 2006) and then assayed for their effect on height growth in a 2-year field trial (Zawaski et al., 2011), from which we selected 10 transgenic events that grew at approximately three-quarters the rate of wild-type trees. The goal was to select semidwarf trees whose phenotype was not so severe as to be irrelevant to possible crop uses but strong enough to give a clear phenotype in a field study. In this study, we analyzed changes in a number of morphological, physiological, and growth traits and investigated the prospect for semidwarfism to be used as a mitigation tool to reduce the frequency of spread of transgenic and exotic species.  相似文献   
67.
Extensive environment-dependent rearrangement of the helix-turn-helix DNA recognition region and adjacent L-tryptophan binding pocket is reported in the crystal structure of dimeric E. coli trp aporepressor with point mutation Leu75Phe. In one of two subunits, the eight residues immediately C-terminal to the mutation are shifted forward in helical register by three positions, and the five following residues form an extrahelical loop accommodating the register shift. In contrast, the second subunit has wildtype-like conformation, as do both subunits in an isomorphous wildtype control structure. Treated together as an ensemble pair, the distorted and wildtype-like conformations of the mutant apoprotein agree more fully than either conformation alone with previously reported NOE measurements, and account more completely for its diverse biochemical and biophysical properties. The register-shifted segment Ile79-Ala80-Thr81-Ile82-Thr83 is helical in both conformations despite low helical propensity, suggesting an important structural role for the steric constraints imposed by β-branched residues in helical conformation.  相似文献   
68.
69.
MicroRNAs (miRNAs) regulate the abundance of target mRNAs by guiding cleavage at sequence complementary regions. In this study, artificial miRNAs (amiRNAs) targeting conserved motifs of the L (replicase) gene of Watermelon silver mottle virus (WSMoV) were constructed using Arabidopsis pre-miRNA159a as the backbone. The constructs included six single amiRNAs targeting motifs A, B1, B2, C, D of E, and two triple amiRNAs targeting motifs AB1E or B2DC. Processing of pre-amiRNAs was confirmed by agro-infiltration, and transgenic Nicotiana benthamiana plants expressing each amiRNA were generated. Single amiRNA transgenic lines expressing amiR-LB2 or amiR-LD showed resistance to WSMoV by delaying symptom development. Triple amiRNA lines expressing amiR-LB2, amiR-LD and amiR-LC provided complete resistance against WSMoV, with no indication of infection 28 days after inoculation. Resistance levels were positively correlated with amiRNA expression levels in these single and triple amiRNA lines. The triple amiR-LAB1E line did not provide resistance to WSMoV. Similarly, the poorly expressed amiR-LC and amiR-LE lines did not provide resistance to WSMoV. The amiR-LA- and amiR-LB1-expressing lines were susceptible to WSMoV, and their additional susceptibility to the heterologous Turnip mosaic virus harbouring individual target sequences indicated that these two amiRNAs have no effect in vivo. Transgenic lines expressing amiR-LB2 exhibited delayed symptoms after challenge with Peanut bud necrosis virus having a single mismatch in the target site. Overall, our results indicate that two amiRNAs, amiR-LB2 and amiR-LD, of the six designed amiRNAs confer moderate resistance against WSMoV, and the triple construct including the two amiRNAs provides complete resistance.  相似文献   
70.
Ramanathan HN  Ye Y 《Cell research》2012,22(2):346-359
The AAA (ATPase-associated with various cellular activities) ATPase p97 acts on diverse substrate proteins to partake in various cellular processes such as membrane fusion and endoplasmic reticulum-associated degradation (ERAD). In membrane fusion, p97 is thought to function in analogy to the related ATPase NSF (N-ethylmaleimide-sensitive fusion protein), which promotes membrane fusion by disassembling a SNARE complex. In ERAD, p97 dislocates misfolded proteins from the ER membrane to facilitate their turnover by the proteasome. Here, we identify a novel function of p97 in endocytic trafficking by establishing the early endosomal autoantigen 1 (EEA1) as a new p97 substrate. We demonstrate that a fraction of p97 is localized to the early endosome membrane, where it binds EEA1 via the N-terminal C2H2 zinc finger domain. Inhibition of p97 either by siRNA or a pharmacological inhibitor results in clustering and enlargement of early endosomes, which is associated with an altered trafficking pattern for an endocytic cargo. Mechanistically, we show that p97 inhibition causes increased EEA1 self-association at the endosome membrane. We propose that p97 may regulate the size of early endosomes by governing the oligomeric state of EEA1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号