首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   34篇
  708篇
  2023年   10篇
  2022年   8篇
  2021年   20篇
  2020年   11篇
  2019年   9篇
  2018年   18篇
  2017年   14篇
  2016年   17篇
  2015年   40篇
  2014年   30篇
  2013年   47篇
  2012年   54篇
  2011年   49篇
  2010年   33篇
  2009年   25篇
  2008年   30篇
  2007年   50篇
  2006年   33篇
  2005年   36篇
  2004年   26篇
  2003年   18篇
  2002年   15篇
  2001年   3篇
  2000年   7篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   5篇
  1976年   6篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
排序方式: 共有708条查询结果,搜索用时 0 毫秒
51.
52.
53.
Fu H  Yadav MP  Nothnagel EA 《Planta》2007,226(6):1511-1524
A biochemical investigation of arabinogalactan proteins (AGPs) in Physcomitrella patens was undertaken with particular emphasis on the glycan chains. Following homogenization and differential centrifugation of moss gametophytes, AGPs were obtained by Yariv phenylglycoside-induced precipitation from the soluble, microsomal membrane, and cell wall fractions. Crossed-electrophoresis indicated that each of these three AGP fractions was a mixture of several AGPs. The soluble AGP fraction was selected for further separation by anion-exchange and gel-permeation chromatography. The latter indicated molecular masses of ∼100 and 224 kDa for the two major soluble AGP subfractions. The AGPs in both of these subfractions contained the abundant (1,3,6)-linked galactopyranosyl residues, terminal arabinofuranosyl residues, and (1,4)-linked glucuronopyranosyl residues that are typical of many angiosperm AGPs. Unexpectedly, however, the moss AGP glycan chains contained about 15 mol% terminal 3-O-methyl-l-rhamnosyl residues, which have not been found in angiosperm AGPs. This unusual and relatively nonpolar sugar, also called l-acofriose, is likely to have considerable effects on the overall polarity of Physcomitrella AGPs. A review of the literature indicates that the capacity to synthesize polymers containing 3-O-methyl-l-rhamnosyl residues is present in a variety of bacteria, algae and lower land plants but became less common through evolution to the extent that this sugar has been found in only a few species of angiosperms where it occurs as a single residue on steroidal glycosides.  相似文献   
54.
Sepsis is a complex clinical syndrome resulting from a harmful host inflammatory response to infection. Chemokines and their receptors play a key role in the pathogenesis of sepsis. BX471 is a potent nonpeptide CC chemokine receptor-1 (CCR1) antagonist in both human and mouse. The aim of the present study was to evaluate the effect of prophylactic and therapeutic treatment with BX471 on cecal ligation and puncture-induced sepsis in the mouse and to investigate the underlying mechanisms. In sepsis induced by cecal ligation and puncture, treatment with BX471 significantly protected mice against lung and liver injury by attenuating MPO activity, an indicator of neutrophil recruitment in lungs and livers and attenuating lung and liver morphological changes in histological sections. Blocking CCR1 by BX471 also downregulated ICAM-1, P-selectin, and E-selectin expression at mRNA and protein levels in lungs and livers compared with placebo-treated groups. These findings suggest that blockage of CCR1 by specific antagonist may represent a promising strategy to prevent disease progression in sepsis.  相似文献   
55.
56.
In murine embryonic fibroblasts, N-acetyl-L-cysteine (NAC), a GSH generating agent, enhances hypoxic apoptosis by blocking the NFkappaB survival pathway (Qanungo, S., Wang, M., and Nieminen, A. L. (2004) J. Biol. Chem. 279, 50455-50464). Here, we examined sulfhydryl modifications of the p65 subunit of NFkappaB that are responsible for NFkappaB inactivation. In MIA PaCa-2 pancreatic cancer cells, hypoxia increased p65-NFkappaB DNA binding and NFkappaB transactivation by 2.6- and 2.8-fold, respectively. NAC blocked these events without having an effect on p65-NFkappaB protein levels and p65-NFkappaB nuclear translocation during hypoxia. Pharmacological inhibition of the NFkappaB pathway also induced hypoxic apoptosis, indicating that the NFkappaB signaling pathway is a major protective mechanism against hypoxic apoptosis. In cell lysates after hypoxia and treatment with N-ethylmaleimide (thiol alkylating agent), dithiothreitol (disulfide reducing agent) was not able to increase binding of p65-NFkappaB to DNA, suggesting that most sulfhydryls in p65-NFkappaB protein were in reduced and activated forms after hypoxia, thereby being blocked by N-ethylmaleimide. In contrast, with hypoxic cells that were also treated with NAC, dithiothreitol increased p65-NFkappaB DNA binding. Glutaredoxin (GRx), which specifically catalyzes reduction of protein-SSG mixed disulfides, reversed inhibition of p65-NFkappaB DNA binding in extracts from cells treated with hypoxia plus NAC and restored NFkappaB activity. This finding indicated that p65-NFkappaB-SSG was formed in situ under hypoxia plus NAC conditions. In cells, knock-down of endogenous GRx1, which also promotes protein glutathionylation under hypoxic radical generating conditions, prevented NAC-induced NFkappaB inactivation and hypoxic apoptosis. The results indicate that GRx-dependent S-glutathionylation of p65-NFkappaB is most likely responsible for NAC-mediated NFkappaB inactivation and enhanced hypoxic apoptosis.  相似文献   
57.
Skp2B, an F-box protein of unknown function, is frequently overexpressed in breast cancer. In order to determine the function of Skp2B and whether it has a role in breast cancer, we performed a two-hybrid screen and established transgenic mice expressing Skp2B in the mammary glands. We found that Skp2B interacts with the repressor of estrogen receptor activity (REA) and that overexpression of Skp2B leads to a reduction in REA levels. In the mammary glands of MMTV-Skp2B mice, REA levels are also low. Our results show that in virgin transgenic females, Skp2B induces lobuloalveolar development and differentiation of the mammary glands normally observed during pregnancy. As this phenotype is identical to what was observed for REA heterozygote mice, our observations suggest that the Skp2B-REA interaction is physiologically relevant. However, in contrast to REA(+/-) mice, MMTV-Skp2B mice develop mammary tumors, suggesting that Skp2B affects additional proteins. These results indicate that the observed expression of Skp2B in breast cancer does contribute to tumorigenesis at least in part by modulating the activity of the estrogen receptor.  相似文献   
58.
Pectic polysaccharides from dietary sources such as Decalepis hamiltonii—swallow root (SRPP), Hemidesmus indicus (HPP), Nigella sativa—black cumin (BCPP), Andrographis serpyllifolia—(APP), Zingiber officinale—ginger (GRPP) and, citrus pectin (CPP) were examined for galectin inhibitory activity. Inhibition of (a) galectin-3 of MDA-MB-231 cells induced hemagglutination of red blood cells; (b) galectin-3 mediated interaction between normal/metastatic human buccal cells (NBC)/(MBC) and; (c) invasion of MDA-MB-231 and MBC in the invasive chamber was assessed. Results indicated that SRPP inhibited hemagglutination at Minimum Inhibitory Concentration (MIC) of 1.86 μg ml−1 equivalent of carbohydrate as apposed to those of BCPP (130 μg ml−1), APP (40 μg ml−1), HPP (40 μg ml−1) and CPP (25 μg ml−1). GRPP even at concentration >1–6 mg ml−1 did not inhibit agglutination. Also SRPP showed ∼15 and 2 fold potent anti hemagglutination activity relative to that of galectin-3 specific sugars—galactose (MIC-27.1 μg ml−1) and lactose (MIC-4.16 μg ml−1) respectively. Further, SRPP at 10 μg ml−1 inhibited agglutination of NBC by galectin-3 of MDA-MB-231 cells. Modified swallow root pectic polysaccharide (MSRPP) of 50 kDa retained anti hemagglutination activity (MIC of 1.03 μg ml−1) and inhibited MDA-MB-231 and MBC invasion by 73 and 50% with an IC50 of 136 and 200 μg ml−1 respectively. Both SRPP and MSRPP induced apoptosis up to 80% at 100 μg ml−1 concentration by activating ∼2 and 8 folds of Caspase-3 activity. Sugar composition analysis and its correlation with the galectin inhibitory property indicated that pectic polysaccharides with higher arabinose and galactose content—arabinogalactan inhibited hemagglutination significantly.  相似文献   
59.
Traditional separation techniques do not yield endolysosomes of sufficient purity to permit detailed biochemical characterization of this important class of intracellular vesicles. Here, we have used a magnetic chromatography technique to isolate the endosomes from rat peritoneal macrophages and studied their lipid composition. Electromagnetic isolation works by retention of colloidal iron containing vesicles on magnetic column. The data suggested that both early and late endosomes were rich in cholesterol, whereas sphingomyelin (SM) and specific phospholipids like phosphatidylcholine. phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine are enriched in the late compartments. Our results also indicated that the purified fractions are enriched in raft lipids like SM, but not in cholesterol. The endosomal purification method described here yields pure endosomes with little or no contamination from mitochondria and hence could be used for further biochemical and marker analysis, giving insight into mechanisms of endocytic traffic.  相似文献   
60.
Increasing data suggest that oxidative stress, due to an increased production of reactive oxygen species and/or a decrease in antioxidants, is involved in the pathophysiology of pulmonary hypertension. Several antioxidant systems regulate the presence of oxidant species in vivo, and of primary interest are the superoxide dismutases (SOD) and catalase. However, little is known about the expression of antioxidant enzymes during the development of pulmonary hypertension. This study uses our lamb model of increased postnatal pulmonary blood flow, secondary to in utero aortopulmonary graft placement (shunt lambs), to investigate the expression patterns as well as activities of antioxidant enzymes during the early development of pulmonary hypertension. Protein levels of catalase, SOD1, SOD2, and SOD3 were evaluated by Western blot, and the activities of catalase and SOD were also quantified. In control lambs, protein expression and activities of catalase and SOD2 increased postnatally (P < 0.05). However, SOD1 and SOD3 protein levels did not change. In shunt lambs, catalase, SOD1, and SOD2 protein levels all increased over the first 8 wk of life (P < 0.05). However, SOD3 did not change. This was associated with an increase in the activities of catalase and SOD2 (P < 0.05). Compared with control lambs, catalase and SOD2 protein levels were decreased in 2-wk-old shunt lambs and this was associated with increased levels of hydrogen peroxide (H(2)O(2)) and superoxide (P < 0.05). Developmentally superoxide but not H(2)O(2) levels significantly increased in both shunt and control lambs with levels being significantly higher in shunt compared with control lambs at 2 and 4 but not 8 wk. These data suggest that the antioxidant enzyme systems are dynamically regulated postnatally, and this regulation is altered during the development of pulmonary hypertension secondary to increased pulmonary blood flow. An increased understanding of these alterations may have important therapeutic implications for the treatment of pulmonary hypertension secondary to increased pulmonary blood flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号