首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   27篇
  2023年   8篇
  2022年   4篇
  2021年   13篇
  2020年   8篇
  2019年   5篇
  2018年   11篇
  2017年   8篇
  2016年   10篇
  2015年   26篇
  2014年   23篇
  2013年   32篇
  2012年   35篇
  2011年   29篇
  2010年   26篇
  2009年   19篇
  2008年   22篇
  2007年   38篇
  2006年   22篇
  2005年   26篇
  2004年   23篇
  2003年   16篇
  2002年   15篇
  2001年   3篇
  2000年   7篇
  1999年   2篇
  1998年   3篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   5篇
  1976年   4篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1967年   1篇
排序方式: 共有515条查询结果,搜索用时 31 毫秒
71.
We have identified a new class of microtubule-binding compounds—noscapinoids—that alter microtubule dynamics at stoichiometric concentrations without affecting tubulin polymer mass. Noscapinoids show great promise as chemotherapeutic agents for the treatment of human cancers. To investigate the structural determinants of noscapinoids responsible for anti-cancer activity, we tested 36 structurally diverse noscapinoids in human acute lymphoblastic leukemia cells (CEM). The IC50 values of these noscapinoids vary from 1.2 to 56.0 μM. Pharmacophore models of anti-cancer activity were generated that identify two hydrogen bond acceptors, two aromatic rings, two hydrophobic groups, and one positively charged group as essential structural features. Additionally, an atom-based quantitative structure–activity relationship (QSAR) model was developed that gave a statistically satisfying result (R 2 = 0.912, Q 2 = 0.908, Pearson R = 0.951) and effectively predicts the anti-cancer activity of training and test set compounds. The pharmacophore model presented here is well supported by electronic property analysis using density functional theory at B3LYP/3-21*G level. Molecular electrostatic potential, particularly localization of negative potential near oxygen atoms of the dimethoxy isobenzofuranone ring of active compounds, matched the hydrogen bond acceptor feature of the generated pharmacophore. Our results further reveal that all active compounds have smaller lowest unoccupied molecular orbital (LUMO) energies concentrated over the dimethoxy isobenzofuranone ring, azido group, and nitro group, which is indicative of the electron acceptor capacity of the compounds. Results obtained from this study will be useful in the efficient design and development of more active noscapinoids.  相似文献   
72.
Aberrant phosphorylation of neuronal cytoskeletal proteins is a key pathological event in neurodegenerative disorders such as Alzheimer disease (AD) and amyotrophic lateral sclerosis, but the underlying mechanisms are still unclear. Previous studies have shown that Pin1, a peptidylprolyl cis/trans-isomerase, may be actively involved in the regulation of Tau hyperphosphorylation in AD. Here, we show that Pin1 modulates oxidative stress-induced NF-H phosphorylation. In an in vitro kinase assay, the addition of Pin1 substantially increased phosphorylation of NF-H KSP repeats by proline-directed kinases, Erk1/2, Cdk5/p35, and JNK3 in a concentration-dependent manner. In vivo, dominant-negative (DN) Pin1 and Pin1 small interfering RNA inhibited epidermal growth factor-induced NF-H phosphorylation. Because oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, we studied the role of Pin1 in stressed cortical neurons and HEK293 cells. Both hydrogen peroxide (H(2)O(2)) and heat stresses induce phosphorylation of NF-H in transfected HEK293 cells and primary cortical cultures. Knockdown of Pin1 by transfected Pin1 short interference RNA and DN-Pin1 rescues the effect of stress-induced NF-H phosphorylation. The H(2)O(2) and heat shock induced perikaryal phospho-NF-H accumulations, and neuronal apoptosis was rescued by inhibition of Pin1 in cortical neurons. JNK3, a brain-specific JNK isoform, is activated under oxidative and heat stresses, and inhibition of Pin1 by Pin1 short interference RNA and DN-Pin1 inhibits this pathway. These results implicate Pin1 as a possible modulator of stress-induced NF-H phosphorylation as seen in neurodegenerative disorders like AD and amyotrophic lateral sclerosis. Thus, Pin1 may be a potential therapeutic target for these diseases.  相似文献   
73.
Lysophosphatidic acid (LPA) stimulates cells by activation of five G-protein-coupled receptors, termed LPA 1-5. The LPA 1 receptor is the most widely expressed and is a major regulator of cell migration. In this study, we show that phorbol ester (PMA)-induced internalization of the LPA(1) receptor requires clathrin AP-2 complexes, protein kinase C, and a distal dileucine motif (amino acids 352 and 353) in the cytoplasmic tail but not beta-arrestin. Agonist-dependent internalization of LPA 1, however, requires a cluster of serine residues (amino acids 341-347) located proximal to the dileucine motif, beta-arrestin, and to a lesser extent clathrin AP-2. The serine cluster of LPA 1 is required for beta-arrestin2-GFP translocation to the plasma membrane and signal desensitization. In contrast, the dileucine motif (IL) is required for both basal and PMA-induced internalization. Evidence for the beta-arrestin independence of PMA-induced internalization of LPA 1 comes from the observations that beta-arrestin2-GFP is not recruited to the plasma membrane upon PMA treatment and that LPA 1 is readily internalized in beta-arrestin1/2 knock-out mouse embryonic fibroblasts. These results indicate that distinct molecular mechanisms regulate agonist-dependent and PMA-dependent internalization of the LPA 1 receptor.  相似文献   
74.
The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii) HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.  相似文献   
75.
76.
Mycobacterium tuberculosis is the etiological agent of tuberculosis in humans and is responsible for more than two million deaths annually. M. tuberculosis isocitrate lyase (MtbICL) catalyzes the first step in the glyoxylate cycle, plays a pivotal role in the persistence of M. tuberculosis, which acts as a potential target for an anti-tubercular drug. To identify the potential anti-tuberculosis compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database (n = 1,67,748) against the MtbICL structure. The ligands were docked against MtbICL in three sequential docking modes that resulted in 340 ligands having better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 27 compounds were found to fit well with re-docking studies. After refinement by molecular docking and drug-likeness analyses, three potential inhibitors (ZINC1306071, ZINC2111081, and ZINC2134917) were identified. These three ligands and the reference compounds were further subjected to molecular dynamics simulation and binding energy analyses to compare the dynamic structure of protein after ligand binding and the stability of the MtbICL and bound complexes. The binding free energy analyses were calculated to validate and capture the intermolecular interactions. The results suggested that the three compounds had a negative binding energy with ?96.462, ?143.549, and ?122.526 kJ mol?1 for compounds with IDs ZINC1306071, ZINC2111081, and ZINC2134917, respectively. These lead compounds displayed substantial pharmacological and structural properties to be drug candidates. We concluded that ZINC2111081 has a great potential to inhibit MtbICL and would add to the drug discovery process against tuberculosis.  相似文献   
77.
Garfish Lepisosteus osseus olfactory nerve, because of its large size and the unusually high concentration of axonal membrane, is an excellent source of axonal membrane. A procedure is described for the isolation of two types of plasma membranes from the nerve which are obtained in yields of about 20 mg (fraction I) and 1.5 mg (fraction II) per g of wet nerve. Both membrane fractions consist mostly of rounded membrane vesicles, with a unit membrane thickness of ~7.5 nm. The two membrane fractions are different in their lipid to protein ratios, Na-K ATPase activities, polypeptide patterns on sodium dodecyl sulfate (SDS) gel electrophoresis, and fatty acid compositions. They have similar phospholipid composition. On the basis of the relative concentration of axonal and Schwann cell plasma membranes in the nerve, the Na-K ATPase activities of the two membrane fractions and a comparison of the properties of the membrane fractions to those of squid and lobster nerve membrane preparations, fraction I seems to be the axonal membrane and fraction II the Schwann cell plasma membrane. Fraction I has a low protein to lipid ratio. Its polypeptide pattern on SDS gel appears to be much more complex as compared to that of fraction II membrane.  相似文献   
78.
79.
80.
The Pseudomonas fluorescens isolate 1 (Pf1) was found to protect the ragi [Eleusine coracana (L.) Gaertner] blast fungus, Pyricularia grisea. Induction of defense proteins viz. chitinase, β-1,3 glucanase, peroxidase (PO) and polyphenol oxidase (PPO) by the Pf1 isolate was studied against P. grisea. Chitinase in a resistant, susceptible and commonly used cultivar with and without challenge inoculation of P. grisea, revealed changes in the isoform pattern by UV illumination after staining the gel with fluorescent brightner 28. Native PAGE (polyacrylamide gel electrophoresis) of PO showed the single isoform in all the treatments including the control and a significant increase in the intensity of the band in the inoculated control and Pf1 treatment in all the varieties. Isoform analysis of PPO showed the induction of PPO in P. fluorescens treated plants challenged with P. grisea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号