首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3478篇
  免费   183篇
  国内免费   1篇
  3662篇
  2023年   14篇
  2022年   25篇
  2021年   57篇
  2020年   43篇
  2019年   37篇
  2018年   66篇
  2017年   55篇
  2016年   76篇
  2015年   127篇
  2014年   166篇
  2013年   232篇
  2012年   258篇
  2011年   263篇
  2010年   134篇
  2009年   146篇
  2008年   235篇
  2007年   229篇
  2006年   217篇
  2005年   203篇
  2004年   243篇
  2003年   189篇
  2002年   180篇
  2001年   37篇
  2000年   22篇
  1999年   30篇
  1998年   39篇
  1997年   33篇
  1996年   25篇
  1995年   34篇
  1994年   36篇
  1993年   24篇
  1992年   15篇
  1991年   19篇
  1990年   8篇
  1989年   18篇
  1988年   10篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   8篇
  1983年   11篇
  1982年   13篇
  1981年   9篇
  1980年   7篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
排序方式: 共有3662条查询结果,搜索用时 0 毫秒
61.
A role for the RNA interference (RNAi) pathway in the establishment of heterochromatin is now well accepted for various organisms. Less is known about its relevance and precise role in mammalian cells. We previously showed that tandem insertion of a 1,000-copy inducible transgene into the genome of baby hamster kidney (BHK) cells initiated the formation of an extremely condensed chromatin locus. Here, we characterized the inactive transgenic locus as heterochromatin, since it was associated with heterochromatin protein 1 (HP1), histone H3 trimethylated at lysine 9, and cytosine methylation in CpG dinucleotides. Northern blot analysis did not detect any transgene-derived small RNAs. RNAi-mediated Dicer knockdown did not disrupt the heterochromatic transgenic locus or up-regulate transgene expression. Moreover, neither Dicer knockdown nor overexpression of transgene-directed small interfering RNAs altered the bidirectional transition of the transgenic locus between the heterochromatic and euchromatic states. Interestingly, tethering of HP1 to the transgenic locus effectively induced transgene silencing and chromatin condensation in a Dicer-independent manner, suggesting a role for HP1 in maintaining the heterochromatic locus. Our results suggest that the RNAi pathway is not required for the assembly and maintenance of noncentromeric heterochromatin initiated by tandem transgene repeats in mammalian cells.  相似文献   
62.
Plants take up inorganic nitrogen and store it unchanged or convert it to organic forms. The nitrogen in such organic compounds is stoichiometrically recoverable by the Kjeldahl method. The sum of inorganic nitrogen and Kjeldahl nitrogen has long been known to equal the total nitrogen in plants. However, in our attempt to study the mechanism of nitrogen dioxide (NO2) metabolism, we unexpectedly discovered that about one-third of the total nitrogen derived from 15N-labeled NO2 taken up by Arabidopsis thaliana (L.) Heynh. plants was converted to neither inorganic nor Kjeldahl nitrogen, but instead to an as yet unknown nitrogen compound(s). We here refer to this nitrogen as unidentified nitrogen (UN). The generality of the formation of UN across species, nitrogen sources and cultivation environments for plants has been shown as follows. Firstly, all of the other 11 plant species studied were found to form the UN in response to fumigation with 15NO2. Secondly, tobacco (Nicotiana tabacum L.) plants fed with 15N-nitrate appeared to form the UN. And lastly, the leaves of naturally fed vegetables, grass and roadside trees were found to possess the UN. In addition, the UN appeared to comprise a substantial proportion of total nitrogen in these plant species. Collectively, all of our present findings imply that there is a novel nitrogen mechanism for the formation of UN in plants. Based on the analyses of the exhaust gas and residue fractions of the Kjeldahl digestion of a plant sample containing the UN, probable candidates for compounds that bear the UN were deduced to be those containing the heat-labile nitrogen–oxygen functions and those recalcitrant to Kjeldahl digestion, including organic nitro and nitroso compounds. We propose UN-bearing compounds may provide a chemical basis for the mechanism of the reactive nitrogen species (RNS), and thus that cross-talk may occur between UN and RNS metabolisms in plants. A mechanism for the formation of UN-bearing compounds, in which RNS are involved as intermediates, is proposed. The important broad impact of this novel nitrogen metabolism, not only on the general physiology of plants, but also on plant substances as human and animal food, and on plants as an integral part of the global environment, is discussed.Abbreviations NO Nitric oxide - NO2 Nitrogen dioxide - RNS Reactive nitrogen species - UN Unidentified nitrogen - TNNAT, RNNAT, INNAT and UNNAT Total, Kjeldahl, inorganic and unidentified nitrogen in naturally fed plants, respectively - TNNIT, RNNIT, INNIT and UNNIT Total, Kjeldahl, inorganic and unidentified nitrogen derived from nitrate, respectively - TNNO2, RNNO2, INNO2 and UNNO2 Total, Kjeldahl, inorganic and unidentified nitrogen derived from NO2, respectively  相似文献   
63.
64.
65.
66.
67.
In early-organogenesis-stage mouse embryos, the posteroventral foregut endoderm adjacent to the heart tube gives rise to liver, ventral pancreas and gallbladder. Hepatic and pancreatic primordia become specified in the posterior segment of the ventral foregut endoderm at early somite stages. The mechanisms for demarcating gallbladder and bile duct primordium, however, are poorly understood. Here, we demonstrate that the gallbladder and bile duct progenitors are specified in the paired lateral endoderm domains outside the heart field at almost the same timing as hepatic and pancreatic induction. In the anterior definitive endoderm, Sox17 reactivation occurs in a certain population within the most lateral domains posterolateral to the anterior intestinal portal (AIP) lip on both the left and right sides. During foregut formation, the paired Sox17-positive domains expand ventromedially to merge in the midline of the AIP lip and become localized between the liver and pancreatic primordia. In Sox17-null embryos, these lateral domains are missing, resulting in a complete loss of the gallbladder/bile-duct structure. Chimera analyses revealed that Sox17-null endoderm cells in the posteroventral foregut do not display any gallbladder/bile-duct molecular characters. Our findings show that Sox17 functions cell-autonomously to specify gallbladder/bile-duct in the mouse embryo.  相似文献   
68.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   
69.
In spite of the importance of hyaluronan in host protection against infectious organisms in the alveolar spaces, its role in mycobacterial infection is unknown. In a previous study, we found that mycobacteria interact with hyaluronan on lung epithelial cells. Here, we have analyzed the role of hyaluronan after mycobacterial infection was established and found that pathogenic mycobacteria can grow by utilizing hyaluronan as a carbon source. Both mouse and human possess 3 kinds of hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3. Utilizing individual HAS-transfected cells, we show that HAS1 and HAS3 but not HAS2 support growth of mycobacteria. We found that the major hyaluronan synthase expressed in the lung is HAS1, and that its expression was increased after infection with Mycobacterium tuberculosis. Histochemical analysis demonstrated that hyaluronan profoundly accumulated in the granulomatous legion of the lungs in M. tuberculosis-infected mice and rhesus monkeys that died from tuberculosis. We detected hyaluronidase activity in the lysate of mycobacteria and showed that it was critical for hyaluronan-dependent extracellular growth. Finally, we showed that L-Ascorbic acid 6-hexadecanoate, a hyaluronidase inhibitor, suppressed growth of mycobacteria in vivo. Taken together, our data show that pathogenic mycobacteria exploit an intrinsic host-protective molecule, hyaluronan, to grow in the respiratory tract and demonstrate the potential usefulness of hyaluronidase inhibitors against mycobacterial diseases.  相似文献   
70.
Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号