首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3478篇
  免费   183篇
  国内免费   1篇
  3662篇
  2023年   14篇
  2022年   25篇
  2021年   57篇
  2020年   43篇
  2019年   37篇
  2018年   66篇
  2017年   55篇
  2016年   76篇
  2015年   127篇
  2014年   166篇
  2013年   232篇
  2012年   258篇
  2011年   263篇
  2010年   134篇
  2009年   146篇
  2008年   235篇
  2007年   229篇
  2006年   217篇
  2005年   203篇
  2004年   243篇
  2003年   189篇
  2002年   180篇
  2001年   37篇
  2000年   22篇
  1999年   30篇
  1998年   39篇
  1997年   33篇
  1996年   25篇
  1995年   34篇
  1994年   36篇
  1993年   24篇
  1992年   15篇
  1991年   19篇
  1990年   8篇
  1989年   18篇
  1988年   10篇
  1987年   7篇
  1986年   9篇
  1985年   10篇
  1984年   8篇
  1983年   11篇
  1982年   13篇
  1981年   9篇
  1980年   7篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1975年   4篇
  1974年   3篇
  1973年   4篇
排序方式: 共有3662条查询结果,搜索用时 0 毫秒
141.
MSM/Ms is an inbred mouse strain established from the Japanese wild mouse, Mus musculus molossinus, which has been phylogenetically distinct from common laboratory mouse strains for about 1 million years. The nucleotide substitution rate between MSM/Ms and C57BL/6 is estimated to be 0.96%. MSM/Ms mice display unique characteristics not observed in the commonly used laboratory strains, including an extremely low incidence of tumor development, high locomotor activity, and resistance to high-fat-diet-induced diabetes. Thus, functional genomic analyses using MSM/Ms should provide a powerful tool for the identification of novel phenotypes and gene functions. We report here the derivation of germline-competent embryonic stem (ES) cell lines from MSM/Ms blastocysts, allowing genetic manipulation of the M. m. molossinus genome. Fifteen blastocysts were cultured in ES cell medium and three ES lines, Mol/MSM-1, -2, and -3, were established. They were tested for germline competency by aggregation with ICR morulae and germline chimeras were obtained from all three lines. We also injected Mol/MSM-1 ES cells into blastocysts of ICR or C57BL/6 × BDF1 mice and found that blastocyst injection resulted in a higher production rate of chimeric mice than did aggregation. Furthermore, Mol/MSM-1 subclones electroporated with a gene trap vector were also highly efficient at producing germline chimeras using C57BL/6 × BDF1 blastocyst injection. This Mol/MSM-1 ES line should provide an excellent new tool allowing the genetic manipulation of the MSM/Ms genome.  相似文献   
142.
The fungus Aspergillus nidulans reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP under hypoxic conditions in a mechanism called ammonia fermentation (Takasaki, K. et al.. J. Biol. Chem. 2004, 279, 12414–12420). To elucidate the mechanism, the fungus was cultured under normoxic and hypoxic (ammonia fermenting) conditions, intracellular proteins were resolved by 2‐DE, and 332 protein spots were identified using MALDI MS after tryptic digestion. Alcohol and aldehyde dehydrogenases that play key roles in oxidizing ethanol were produced at the basal level under hypoxic conditions but were obviously provoked by ethanol under normoxic conditions. Enzymes involved in gluconeogenesis, as well as the tricarboxylic and glyoxylate cycles, were downregulated. These results indicate that the mechanism of fungal energy conservation is altered under hypoxic conditions. The results also showed that proteins in the pentose phosphate pathway as well as the metabolism of both nucleotide and thiamine were upregulated under hypoxic conditions. Levels of xanthine and hypoxanthine, deamination products of guanine and adenine were increased in DNA from hypoxic cells, indicating an association between hypoxia and intracellular DNA base damage. This study is the first proteomic comparison of the hypoxic responses of A. nidulans.  相似文献   
143.
144.
Carpropamid ((1RS,3SR)-2,2-dichloro-N-[(R)-1-(4-chlorophenyl)ethyl]-1-ethyl-3-methylcyclopropanecarboxamide) is a potent chemical against the rice blast fungus, Pyricularia oryzae. In 2001, isolates of the fungus with reduced sensitivity to this fungicide appeared in Saga Prefecture of Japan and were regarded as a potential threat to rice protection by carpropamid. The cause of the resistance has been identified genetically as a point mutation resulting in the Val75Met change in scytalone dehydratase, the primary target of the fungicide. We constructed an overexpression system of the variant enzyme and characterized the kinetics in the catalysis and the inhibition by carpropamid isomers. The variant enzyme retained a significant level of enzymatic activity. Inhibition of the variant enzyme by carpropamid was more than 200-fold reduced in comparison with that of the wild-type. Based on the results, here we propose possible mechanisms of the carpropamid-resistance of the variant enzyme in retaining the normal enzymatic activity.  相似文献   
145.
In vitro culture of small neuronal networks with pre-defined topological features is particularly desirable when the electrical activity of such assemblies can be monitored for long periods of time. Indeed, it is hoped that such networks, with pre-determined connectivity, will provide unique insights into the structure/function relationship of biological neural networks and their properties of self-organization. However, the experimental techniques that have been developed so far for that purpose have either failed to provide very long-term pattern definition and retention, or they have not shown potential for integration into more complex microfluidic devices. To address this problem, three-dimensional microfluidic systems in poly(dimethylsiloxane) (PDMS) were fabricated and used in conjunction with both custom-made and commercially available planar microelectrode arrays (pMEAs). Various types of primary neuronal cell cultures were established inside these systems. Extracellular electrical signals were successfully recorded from all types of cells placed inside the patterns, and this bioelectrical activity was present for several weeks. The advantage of this approach is that it can be further integrated with microfluidic devices and pMEAs to yield, for example, complex neuron-based biosensors or chips for pharmacological screening.  相似文献   
146.
Maid is a helix-loop-helix protein that is involved in cell proliferation. In order to further elucidate its physiological functions, we studied Maid activity in two small fish model systems. We found that Maid expression was greatest in zebrafish liver and that it increased following partial hepatectomy. Maid levels were also high in hepatic preneoplastic foci induced by treatment of zebrafish with diethylnitrosamine (DEN), but low in hepatocellular carcinomas (HCC), mixed tumors, and cholangiocarcinomas developing in these animals. In DEN-treated transgenic medaka overexpressing Maid, hepatic BrdU uptake and proliferation were reduced. After successive breedings, Maid transgenic medaka exhibited decreased movement and a higher incidence of abnormal spine curvature, possibly due to the senescence of spinal cord cells. Taken together, our results suggest that Maid levels can influence the progression of liver cancer. In conclusion, we found that Maid is important regulator of hepatocarconogenesis and aging.  相似文献   
147.

Background

Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear.

Aims

To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice.

Methods

We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay.

Results

OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml.

Conclusions

OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity.  相似文献   
148.
Dengue virus (DENV) is one of the most important arthropod-borne pathogens that cause life-threatening diseases in humans. However, no vaccine or specific antiviral is available for dengue. As seen in other RNA viruses, the innate immune system plays a key role in controlling DENV infection and disease outcome. Although the interferon (IFN) response, which is central to host protective immunity, has been reported to limit DENV replication, the molecular details of how DENV infection is modulated by IFN treatment are elusive. In this study, by employing a gain-of-function screen using a type I IFN-treated cell-derived cDNA library, we identified a previously uncharacterized gene, C19orf66, as an IFN-stimulated gene (ISG) that inhibits DENV replication, which we named Repressor of yield of DENV (RyDEN). Overexpression and gene knockdown experiments revealed that expression of RyDEN confers resistance to all serotypes of DENV in human cells. RyDEN expression also limited the replication of hepatitis C virus, Kunjin virus, Chikungunya virus, herpes simplex virus type 1, and human adenovirus. Importantly, RyDEN was considered to be a crucial effector molecule in the IFN-mediated anti-DENV response. When affinity purification-mass spectrometry analysis was performed, RyDEN was revealed to form a complex with cellular mRNA-binding proteins, poly(A)-binding protein cytoplasmic 1 (PABPC1), and La motif-related protein 1 (LARP1). Interestingly, PABPC1 and LARP1 were found to be positive modulators of DENV replication. Since RyDEN influenced intracellular events on DENV replication and, suppression of protein synthesis from DENV-based reporter construct RNA was also observed in RyDEN-expressing cells, our data suggest that RyDEN is likely to interfere with the translation of DENV via interaction with viral RNA and cellular mRNA-binding proteins, resulting in the inhibition of virus replication in infected cells.  相似文献   
149.
A subclonal cl.1–14 cell was established from a monocytic cell line U937 by a limiting dilution method. The anti-HIV-1 activity of some antiviral compounds was evaluated in HIV-1-infected cl.1–14 cells. The results demonstrated that although AZT was a potent inhibitor of HIV-1 replication in cl.1–14 cells, its 50% effective concentration (EC50) values was 80 times higher than that in HIV-1 infected MT-4 cells; the EC50 of AZT was 0.16 μM and 0.002 μM in cl.1–14 and MT-4 cells, respectively. In contrast, the anti-HIV-1 activity of ddA, ddI and ddC in cl.1–14 cells was comparable to that in MT-4 cells. The antiviral activity of nevirapine, dextran sulfate, curdlan sulfate and T22 did not differ significantly between the cl. 1–14 and MT-4 cells. The antiviral activity of several compounds in the HIV-1-infected cl.1–14 cells was similar to that in the HIV-1jr -fl -infected human peripheral macrophages. Our results suggest that cl.1–14 cell cultures are very useful for estimating antiviral activity and more advantageous than the use of peripheral blood macrophages.  相似文献   
150.
RBM10, originally called S1-1, is a nuclear RNA-binding protein with domains characteristic of RNA processing proteins. It has been reported that RBM10 constitutes spliceosome complexes and that RBM5, a close homologue of RBM10, regulates alternative splicing of apoptosis-related genes, Fas and cFLIP. In this study, we examined whether RBM10 has a regulatory function in splicing similar to RBM5, and determined that it indeed regulates alternative splicing of Fas and Bcl-x genes. RBM10 promotes exon skipping of Fas pre-mRNA as well as selection of an internal 5′-splice site in Bcl-x pre-mRNA. We propose a consensus RBM10-binding sequence at 5′-splice sites of target exons and a mechanistic model of RBM10 action in the alternative splicing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号