首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   39篇
  2022年   5篇
  2021年   15篇
  2020年   6篇
  2019年   3篇
  2018年   2篇
  2017年   8篇
  2016年   10篇
  2015年   8篇
  2014年   21篇
  2013年   11篇
  2012年   22篇
  2011年   23篇
  2010年   10篇
  2009年   8篇
  2008年   10篇
  2007年   12篇
  2006年   10篇
  2005年   11篇
  2004年   8篇
  2003年   3篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   5篇
  1989年   7篇
  1988年   7篇
  1987年   7篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   3篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有297条查询结果,搜索用时 93 毫秒
21.
Wei Q  Hariharan V  Huang H 《PloS one》2011,6(10):e27064
Control over cell viability is a fundamental property underlying numerous physiological processes. Cell spreading on a substrate was previously demonstrated to be a major factor in determining the viability of individual cells. In multicellular organisms, cell-cell contact is likely to play a significant role in regulating cell vitality, but its function is easily masked by cell-substrate interactions, thus remains incompletely characterized. In this study, we show that suspended immortalized human keratinocyte sheets with persisting intercellular contacts exhibited significant contraction, junctional actin localization, and reinforcement of cell-cell adhesion strength. Further, cells within these sheets remain viable, in contrast to trypsinized cells suspended without either cell-cell or cell-substrate contact, which underwent apoptosis at high rates. Suppression of plakoglobin weakened cell-cell adhesion in cell sheets and suppressed apoptosis in suspended, trypsinized cells. These results demonstrate that cell-cell contact may be a fundamental control mechanism governing cell viability and that the junctional protein plakoglobin is a key regulator of this process. Given the near-ubiquity of plakoglobin in multicellular organisms, these findings could have significant implications for understanding cell adhesion, modeling disease progression, developing therapeutics and improving the viability of tissue engineering protocols.  相似文献   
22.
23.
The reproducible pattern of organismal growth during metazoan development is the product of genetically controlled signaling pathways. Patterned activation of these pathways shapes developing organs and dictates overall organismal shape and size. Here, we show that patches of tissue that are mutant for the Drosophila Tsg101 ortholog, erupted, cause dramatic overproliferation of adjacent wild-type tissue. Tsg101 proteins function in endosomal sorting and are required to incorporate late endosomes into multivesicular bodies. Drosophila cells with impaired Tsg101 function show accumulation of the Notch receptor in intracellular compartments marked by the endosomal protein Hrs. This causes increased Notch-mediated signaling and ectopic expression of the Notch target gene unpaired (upd), which encodes the secreted ligand of the JAK-STAT pathway. Activation of JAK-STAT signaling in surrounding wild-type cells correlates with their overgrowth. These findings define a pathway by which changes in endocytic trafficking can regulate tissue growth in a non-cell-autonomous manner.  相似文献   
24.
Formation of a noncanonical base pair between dFTP, a dTTP analogue that cannot form H bonds, and the fluorescent base analogue 2-aminopurine (2AP) was studied in order to discover how the bacteriophage T4 DNA polymerase selects nucleotides with high accuracy. Changes in 2AP fluorescence intensity provided a spectroscopic reporter of the nucleotide binding reactions, which were combined with rapid-quench, pre-steady-state reactions to measure product formation. These studies supported and extended previous findings that the T4 DNA polymerase binds nucleotides in multiple steps with increasing selectivity. With 2AP in the template position, initial dTTP binding was rapid but selective: K(d(dTTP)) (first step) = 31 microM; K(d(dCTP)) (first step) approximately 3 mM. In studies with dFTP, this step was revealed to have two components: formation of an initial preinsertion complex in which H bonds between bases in the newly forming base pair were not essential, which was followed by formation of a final preinsertion complex in which H bonds assisted. The second nucleotide binding step was characterized by increased discrimination against dTTP binding opposite template 2AP, K(d) (second step) = 367 microM, and additional conformational changes were detected in ternary enzyme-DNA-dTTP complexes, as expected for forming closed complexes. We demonstrate here that the second binding step occurs before formation of the phosphodiester bond. Thus, the high fidelity of nucleotide insertion by T4 DNA polymerase is accomplished by the sequential application of selectivity in first forming accurate preinsertion complexes, and then additional conformational changes are applied that further increase discrimination against incorrect nucleotides.  相似文献   
25.
L-selectin functions as an important adhesion molecule that mediates tethering and rolling of lymphocytes by binding to high endothelial venule (HEV)-expressed ligands during recirculation. Subsequent lymphocyte arrest and transmigration require activation through binding of HEV-decorated homeostatic chemokines such as secondary lymphoid tissue chemokine (SLC; CCL21) to its counterreceptor, CCR7. Importantly, L-selectin also functions as a signaling molecule. In this study, signaling induced by ligation of L-selectin using mAb or endothelial cell-expressed ligand significantly enhanced the chemotaxis of murine T cells and B cells to SLC but not to other homeostatic chemokines. Consistent with the expression levels of L-selectin in different lymphocyte subsets, L-selectin-mediated enhancement of chemotaxis to SLC was observed for all naive lymphocytes and effector/memory CD8(+) T cells, whereas only a subpopulation of effector/memory CD4(+) T cells responded. During in vivo mesenteric lymph node migration assays, the absence of L-selectin on lymphocytes significantly attenuated both their ability to migrate out of the HEV and their chemotaxis away from the vessel wall. Notably, ligation of L-selectin and/or CCR7 did not result in increased CCR7 expression levels, internalization, or re-expression. Pharmacologic inhibitor studies showed that L-selectin-mediated enhanced chemotaxis to SLC required intact intracellular kinase function. Furthermore, treatment of lymphocytes with the spleen tyrosine kinase family inhibitor piceatannol reduced their ability to migrate across the HEV in peripheral lymph nodes. Therefore, these results suggest that "cross-talk" in the signaling pathways initiated by L-selectin and CCR7 provides a novel mechanism for functional synergy between these two molecules during lymphocyte migration.  相似文献   
26.
We report the annotated genome sequence of two clinical isolates of Mycobacterium tuberculosis isolated from Kerala, India.  相似文献   
27.
28.
29.
30.
Plant volatile organic compounds (pVOCs) are being recognized as an important factor in plant–environment interactions. Both the type and amount of the emissions appear to be heavily affected by climate change. A range of studies therefore has been directed toward understanding pVOC emissions, mostly under laboratory conditions (branch/leaf enclosure). However, there is a lack of rapid, sensitive, and selective analytical methods, and therefore, only little is known about VOC emissions under natural, outdoor conditions. An increased sensitivity and the identification of taxon‐specific patterns could turn VOC analysis into a powerful tool for the monitoring of atmospheric chemistry, ecosystems, and biodiversity, with far‐reaching relevance to the impact of climate change on pVOCs and vice versa. This study for the first time investigates the potential of ion mobility spectrometry coupled to gas‐chromatographic preseparation (GC‐IMS) to dramatically increase sensitivity and selectivity for continuous monitoring of pVOCs and to discriminate contributing plant taxa and their phenology. Leaf volatiles were analyzed for nine different common herbaceous plants from Germany. Each plant turned out to have a characteristic metabolite pattern. pVOC patterns in the field would thus reflect the composition of the vegetation, but also phenology (with herbaceous and deciduous plants contributing according to season). The technique investigated here simultaneously enables the identification and quantification of substances characteristic for environmental pollution such as industrial and traffic emissions or pesticides. GC‐IMS thus has an enormous potential to provide a broad range of data on ecosystem function. This approach with near‐continues measurements in the real plant communities could provide crucial insights on pVOC‐level emissions and their relation to climate and phenology and thus provide a sound basis for modeling climate change scenarios including pVOC emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号