首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   35篇
  239篇
  2022年   4篇
  2021年   12篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   9篇
  2015年   7篇
  2014年   19篇
  2013年   10篇
  2012年   17篇
  2011年   16篇
  2010年   10篇
  2009年   9篇
  2008年   8篇
  2007年   12篇
  2006年   9篇
  2005年   8篇
  2004年   7篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有239条查询结果,搜索用时 0 毫秒
61.
62.
PurposeTo determine whether nano-architectural interrogation of prostate field carcinogenesis can be used to predict prognosis in patients with early stage (Gleason 6) prostate cancer (PCa), which is mostly indolent but frequently unnecessarily treated.ResultsThere was a profound increase in nano-architectural disorder between progressors and non-progressors. Indeed, the Ld from future progressors was dramatically increased when compared to future non-progressors (1±0.065 versus 1.30±0.0614, respectively p = 0.002). The area under the receiver operator characteristic curve (AUC) was 0.79, yielding a sensitivity of 88% and specificity of 72% for discriminating between progressors and non-progressors. This was not confounded by demographic factors (age, smoking status, race, obesity), thus supporting the robustness of the approach.ConclusionsWe demonstrate, for the first time, that nano-architectural alterations occur in prostate cancer field carcinogenesis and can be exploited to predict prognosis of early stage PCa. This approach has promise in addressing the clinically vexing dilemma of management of Gleason 6 PCa and may provide a paradigm for dealing with the larger issue of cancer overdiagnosis.  相似文献   
63.
Berberine chloride, a quarternary isoquinoline alkaloid, is a promising anti-leishmanial compound, IC50 being 7.1 µM in L. donovani promastigotes. This leishmanicidal activity was initiated by its pro-oxidant effect, evidenced by enhanced generation of reactive oxygen intermediates that was accompanied by depletion of thiols; pre-incubation in N-acetyl cysteine, attenuated its cell viability, corroborating that generation of free radicals triggered its parasiticidal activity. Externalization of phosphatidylserine and elevation of intracellular calcium preceded depolarization of the mitochondrial membrane potential, which translated into an increase in the sub G0/G1 population and was accompanied by DNA laddering, hallmarks of apoptosis. Berberine chloride failed to induce caspase activity and anti-leishmanial activity in the presence of a pan caspase inhibitor, Z-Val-Ala-DL-Asp (methoxy)-fluoromethylketone remained unchanged, which indicated that the apoptosis was caspase independent. Collectively, the data indicates that Berberine chloride triggers an apoptosis-like death following enhanced generation of reactive oxygen species, thus meriting further pharmacological investigations.  相似文献   
64.
The use of monoclonal antibodies (mAbs) has become a general approach for specifically targeting and treating human disease. In oncology, the therapeutic utility of mAbs is usually evaluated in the context of treatment with standard of care, as well as other small molecule targeted therapies. Many anti-cancer antibody modalities have achieved validation, including the targeting of growth factor and angiogenesis pathways, the induction of tumor cell killing or apoptosis and the blocking of immune inhibitory mechanisms to stimulate anti-tumor responses. But, as with other targeted therapies, few antibodies are curative because of biological complexities that underlie tumor formation and redundancies in molecular pathways that enable tumors to adapt and show resistance to treatment. This review discusses the combinations of antibody therapeutics that are emerging to improve efficacy and durability within a specific biological mechanism (e.g., immunomodulation or the inhibition of angiogenesis) and across multiple biological pathways (e.g., inhibition of tumor growth and induction of tumor cell apoptosis).Key words: antibody combination, receptor tyrosine kinase, angiogenesis, immunomodulation, apoptosis, CD20  相似文献   
65.

Background

The complement component C3a induces degranulation in human mast cells via the activation of cell surface G protein coupled receptors (GPCR; C3aR). For most GPCRs, agonist-induced receptor phosphorylation leads to the recruitment of β-arrestin-1/β-arrestin-2; resulting in receptor desensitization and internalization. Activation of GPCRs also leads to ERK1/2 phosphorylation via two temporally distinct pathways; an early response that reflects G protein activation and a delayed response that is G protein independent but requires β-arrestins. The role of β-arrestins on C3aR activation/regulation in human mast cells, however, remains unknown.

Methodology/Principal Findings

We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of β-arrestin-1 and β-arrrestin-2 in human mast cell lines, HMC-1 and LAD2 that endogenously expresses C3aR. Silencing β-arrestin-2 attenuated C3aR desensitization, blocked agonist-induced receptor internalization and rendered the cells responsive to C3a for enhanced NF-κB activity as well as chemokine generation. By contrast, silencing β-arrestin-1 had no effect on these responses but resulted in a significant decrease in C3a-induced mast cell degranulation. In shRNA control cells, C3a caused a transient ERK1/2 phosphorylation, which peaked at 5 min but disappeared by 10 min. Knockdown of β-arrestin-1, β-arrestin-2 or both enhanced the early response to C3a and rendered the cells responsive for ERK1/2 phosphorylation at later time points (10–30 min). Treatment of cells with pertussis toxin almost completely blocked both early and delayed C3a-induced ERK1/2 phosphorylation in β-arrestin1/2 knockdown cells.

Conclusion/Significance

This study demonstrates distinct roles for β-arrestins-1 and β-arrestins-2 on C3aR desensitization, internalization, degranulation, NF-κB activation and chemokine generation in human mast cells. It also shows that both β-arrestin-1 and β-arrestin-2 play a novel and shared role in inhibiting G protein-dependent ERK1/2 phosphorylation. These findings reveal a new level of complexity for C3aR regulation by β-arrestins in human mast cells.  相似文献   
66.
67.
68.
X-ray crystal structures have been previously determined for three CLC-type transporter homologues, but the absolute unitary transport rate is known for only one of these. The Escherichia coli Cl(-)/H(+) antiporter (EC) moves ~2000 Cl(-) ions/s, an exceptionally high rate among membrane-transport proteins. It is not known whether such rapid turnover is characteristic of ClCs in general or if the E. coli homologue represents a functional outlier. Here, we characterize a CLC Cl(-)/H(+) antiporter from the cyanobacterium Synechocystis sp. PCC6803 (SY) and determine its crystal structure at 3.2 ? resolution. The structure of SY is nearly identical to that of EC, with all residues involved in Cl(-) binding and proton coupling structurally similar to their equivalents in EC. SY actively pumps protons into liposomes against a gradient and moves Cl(-) at ~20 s(-1), 1% of the EC rate. Electrostatic calculations, used to identify residues contributing to ion binding energetics in SY and EC, highlight two residues flanking the external binding site that are destabilizing for Cl(-) binding in SY and stabilizing in EC. Mutation of these two residues in SY to their counterparts in EC accelerates transport to ~150 s(-1), allowing measurement of Cl(-)/H(+) stoichiometry of 2/1. SY thus shares a similar structure and a common transport mechanism to EC, but it is by comparison slow, a result that refutes the idea that the transport mechanism of CLCs leads to intrinsically high rates.  相似文献   
69.
Autophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.  相似文献   
70.
We have previously reported a novel class of tetrahydroindazoles that display potency against a variety of Gram-positive and Gram-negative bacteria, potentially via interaction with type II bacterial topoisomerases. Herein are reported SAR investigations of this new series. Several compounds possessing broad-spectrum potency were prepared. Further, these compounds exhibit activity against multidrug-resistant Gram-positive microorganisms equivalent to that against susceptible strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号