首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   33篇
  849篇
  2023年   9篇
  2022年   16篇
  2021年   23篇
  2020年   14篇
  2019年   15篇
  2018年   30篇
  2017年   18篇
  2016年   27篇
  2015年   32篇
  2014年   44篇
  2013年   74篇
  2012年   67篇
  2011年   55篇
  2010年   38篇
  2009年   34篇
  2008年   45篇
  2007年   37篇
  2006年   30篇
  2005年   33篇
  2004年   29篇
  2003年   35篇
  2002年   24篇
  2001年   9篇
  2000年   10篇
  1999年   12篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   6篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
排序方式: 共有849条查询结果,搜索用时 15 毫秒
51.
Burkholderia glumae is the major causal agent of bacterial panicle blight of rice, which is a growing disease problem for rice growers worldwide. In our previous study, some B. glumae strains showed pigmentation phenotypes producing at least two (yellow–green and purple) pigment compounds in casein–peptone–glucose agar medium. The B. glumae strains LSUPB114 and LSUPB116 are pigment‐deficient mutant derivatives of the virulent and pigment‐proficient strain 411gr‐6, having mini‐Tn5gus insertions in aroA encoding 3‐phosphoshikimate 1‐carboxyvinyltransferase and aroB encoding 3‐dehydroquinate synthase, respectively. Both enzymes are known to be involved in the shikimate pathway, which leads to the synthesis of aromatic amino acids. Here, we demonstrate that aroA and aroB are required for normal virulence in rice and onion, growth in M9 minimal medium and tolerance to UV light, but are dispensable for the production of the phytotoxin toxoflavin. These results suggest that the shikimate pathway is involved in bacterial pathogenesis by B. glumae without a significant role in the production of toxoflavin, a major virulence factor of this pathogen.  相似文献   
52.
Advances in Arachis genomics for peanut improvement   总被引:3,自引:0,他引:3  
Peanut genomics is very challenging due to its inherent problem of genetic architecture. Blockage of gene flow from diploid wild relatives to the tetraploid; cultivated peanut, recent polyploidization combined with self pollination, and the narrow genetic base of the primary genepool have resulted in low genetic diversity that has remained a major bottleneck for genetic improvement of peanut. Harnessing the rich source of wild relatives has been negligible due to differences in ploidy level as well as genetic drag and undesirable alleles for low yield. Lack of appropriate genomic resources has severely hampered molecular breeding activities, and this crop remains among the less-studied crops. The last five years, however, have witnessed accelerated development of genomic resources such as development of molecular markers, genetic and physical maps, generation of expressed sequenced tags (ESTs), development of mutant resources, and functional genomics platforms that facilitate the identification of QTLs and discovery of genes associated with tolerance/resistance to abiotic and biotic stresses and agronomic traits. Molecular breeding has been initiated for several traits for development of superior genotypes. The genome or at least gene space sequence is expected to be available in near future and this will further accelerate use of biotechnological approaches for peanut improvement.  相似文献   
53.
Atherigona soccata (Rondani) (Diptera: Muscidae) is one of the most important pests of sorghum, Sorghum bicolor (L.) Moench, in Asia, Africa, and the Mediterranean Europe. Exploitation of cytoplasmic male sterility (CMS) for hybrid production has resulted in considerable narrowing of the genetic base and may increase the vulnerability of this crop to insect pests. Therefore, we studied the expression of different mechanisms of resistance in sorghum to A. soccata in CMS (A) and maintainer (B) lines of 12 genotypes under field and greenhouse conditions. The CMS lines of A. soccata-resistant genotypes were preferred for oviposition (78.5 versus 71.5% plants with eggs) and suffered greater deadheart incidence (47.6 versus 41.6%) than the corresponding maintainer lines, whereas such differences were not apparent in CMS lines belonging to the susceptible genotypes (92.7 versus 92.3% plants with eggs and 75.6 versus 74.6% deadhearts) under multichoice field conditions. Similar differences also were observed under controlled conditions in the greenhouse. The larval period (9.0 versus 8.8 d) and pupal mortality (18.4 versus 13.4%) were greater on maintainer lines than that on the CMS lines in the resistant group. The male and female pupal weights, fecundity, and antibiosis index were greater on the CMS than on the maintainer lines. The maintainer lines showed better recovery resistance than the CMS lines, but no such differences were observed in tiller deadhearts. The differences in susceptibility to A. soccata were greater in the A. soccata resistant CMS and maintainer lines than in the CMS and maintainer lines belonging to susceptible genotypes. Conversion of A. soccata-resistant genotypes into alternate less susceptible cytoplasmic backgrounds may be undertaken for developing sorghum hybrids with stable resistance to A. soccata.  相似文献   
54.
The present work deals with the theoretical estimation of ion-pair binding energies and the energetic properties of four ion pairs formed by combining the 1-butyl-2,4-dinitro-3-methyl imidazolium ion with nitrate (I), perchlorate (II), dinitramide (III), or 3,5-dinitro-1,2,4-triazolate (IV) anions. The counterpoise-corrected ion-pair binding energies were calculated for each ion pair at the B3LYP/6-311+G(d,p) level of theory. Results show that the cation–anion interaction is strongest for ion pair I and weakest for IV, indicating that the nitrate (I) has a greater tendency to exist as a stable ionic salt whereas the 3,5-dinitro-1,2,4-triazolate (IV) may exist as an ionic liquid. Natural bond orbital (NBO) analysis and electrostatic potential (ESP) mapping revealed that charge transfer occurs in all of the ion pairs, but is greatest (0.25e) for ion pair I and smallest (0.03e) for IV, resulting in ion pair I being the least polarized. A nucleus-independent chemical shift (NICS) study revealed that the aromaticity of the 1-butyl-2,4-dinitro-3-methyl imidazolium ion significantly increases in ion pair IV, indicating that this has the greatest charge delocalization among all of the four ion pairs considered. Studies of thermodynamic and detonation properties showed that ion pair II is the most energetic ion pair in terms of its detonation velocity (D = 7.5 km s?1) and detonation pressure (P = 23.1 GPa). It is also envisaged that ion pair IV would exist as an energetic azolium azolate type ionic liquid that could be conveniently used as a secondary explosive characterized by detonation parameters D and P of 6.9 km s?1 and 19.3 GPa, respectively. These values are comparable to those of conventional explosives such as TNT.  相似文献   
55.
Vitamin A deficiency is a widely prevalent health disorder among millions of people worldwide. Introgression of crtRB1 and lcyE favourable alleles that enhance concentration of provitamin A in maize endosperm have been employed in maize biofortification programmes. To make marker-assisted selection (MAS) more effective, we have developed rapid and convenient multiplex-polymerase chain reaction (PCR) assay to simultaneously discover the allelic combinations among the segregants. Validation of the multiplex assay was done in two backcross-derived populations developed using elite inbreds viz., HKI193-1 and HKI193-2 carrying unfavourable alleles of crtRB1 (296 bp) and lcyE (300 bp) and HarvestPlus inbreds viz., HP704-22 and HP704-23 possessing favourable alleles of crtRB1 (543 bp) and lcyE (650 bp). We also standardized the uniplex-PCR assays for both the genes that gave robust and reproducible results in sub-tropical populations. Gel profiles of BC1F1, BC2F1 and BC2F2 revealed that these assays identified the backcross progenies homo-or hetero-zygous for the favourable- or unfavourable-alleles. Multiplex-PCR assay also precisely confirmed the results of individual uniplex assays in different backcross generations. Cost and time analyses showed that multiplex-PCR assay has potential to save 41% of cost, and 50% of time compared to two uniplex assays in a MAS programme. It has also saved 50% of the manpower. The multiplex assay possesses significant advantage over uniplex assays and enhances the efficiency of selection. This is the first report of development and validation of multiplex-PCR assay of crtRB1 and lcyE for utilization in maize biofortification programme.  相似文献   
56.
57.
Stable transfectants of Chinese hamster ovary (CHO) cells were developed that expressed the protein encoded by a human insulin-like growth factor I (IGF-I) receptor cDNA. The transfected cells expressed approximately 25,000 high affinity receptors for IGF-I (apparent Kd of 1.5 X 10(-9) M), whereas the parental CHO cells expressed only 5,000 receptors per cell (apparent Kd of 1.3 X 10(-9) M). A monoclonal antibody specific for the human IGF-I receptor inhibited IGF-I binding to the expressed receptor and immunoprecipitated polypeptides of apparent Mr values approximately 135,000 and 95,000 from metabolically labeled lysates of the transfected cells but not control cells. The expressed receptor was also capable of binding IGF-II with high affinity (Kd approximately 3 nM) and weakly recognized insulin (with about 1% the potency of IGF-I). The human IGF-I receptor expressed in these cells was capable of IGF-I-stimulated autophosphorylation and phosphorylation of endogenous substrates in the intact cell. This receptor also mediated IGF-I-stimulated glucose uptake, glycogen synthesis, and DNA synthesis. The extent of these responses was comparable to the stimulation by insulin of the same biological responses in CHO cells expressing the human insulin receptor. These results indicate that the isolated cDNA encodes a functional IGF-I receptor and that there are no inherent differences in the abilities of the insulin and IGF-I receptors to mediate rapid and long term biological responses when expressed in the same cell type. The high affinity of this receptor for IGF-II also suggests that it may be important in mediating biological responses to IGF-II as well as IGF-I.  相似文献   
58.
PprA is known to contribute to Deinococcus radiodurans'' remarkable capacity to survive a variety of genotoxic assaults. The molecular bases for PprA''s role(s) in the maintenance of the damaged D. radiodurans genome are incompletely understood, but PprA is thought to promote D. radiodurans''s capacity for DSB repair. PprA is found in a multiprotein DNA processing complex along with an ATP type DNA ligase, and the D. radiodurans toposiomerase IB (DraTopoIB) as well as other proteins. Here, we show that PprA is a key contributor to D. radiodurans resistance to nalidixic acid (Nal), an inhibitor of topoisomerase II. Growth of wild type D. radiodurans and a pprA mutant were similar in the absence of exogenous genotoxic insults; however, the pprA mutant exhibited marked growth delay and a higher frequency of anucleate cells following treatment with DNA-damaging agents. We show that PprA interacts with both DraTopoIB and the Gyrase A subunit (DraGyrA) in vivo and that purified PprA enhances DraTopoIB catalysed relaxation of supercoiled DNA. Thus, besides promoting DNA repair, our findings suggest that PprA also contributes to preserving the integrity of the D. radiodurans genome following DNA damage by interacting with DNA topoisomerases and by facilitating the actions of DraTopoIB.  相似文献   
59.
All Rhizobium strains examined to date have one or multiple alleles of nodD. At least one copy of nodD and the presence of flavonoid exudates are required for nod gene induction and nodulation. Sinorhizobium fredii USDA191 has two copies of nodD. In this study, we demonstrate that inactivation of either copy of nodD caused a reduction in basal levels of expression of nodC. Extra copies of nodD1 had no effect on the expression of nodC when compared with the wild type, but extra copies of nodD2 abolished the inducer requirement, thereby rendering nodC constitutive. A nodD1 mutant was unable to nodulate soybean cultivars 'Peking' and 'McCall'. Inactivation of nodD2 or addition of extra copies of nodD1 or nodD2 caused delayed nodulation on Peking, and reduced the number of nodules on McCall. Both nodD alleles of S. fredii USDA191 appear to be involved in regulation of exopolysaccharide production; however, nodD2 appears to be more important in this respect than nodD1.  相似文献   
60.
Asthma and chronic obstructive pulmonary disease remain a global health problem, with increasing morbidity and mortality. Despite differences in the causal agents, both diseases exhibit various degrees of inflammatory changes, structural alterations of the airways leading to airflow limitation. The existence of transient disease phenotypes which overlap both diseases and which progressively decline the lung function has complicated the search for an effective therapy. Important characteristics of chronic airway diseases include airway and vascular remodeling, of which the molecular mechanisms are complex and poorly understood. Recently, we and others have shown that airway smooth muscle (ASM) cells are not only structural and contractile components of airways, rather they bear capabilities of producing large number of pro-inflammatory and mitogenic factors. Increase in size and number of blood vessels both inside and outside the smooth muscle layer as well as hyperemia of bronchial vasculature are contributing factors in airway wall remodeling in patients with chronic airway diseases, proposing for the ongoing mechanisms like angiogenesis and vascular dilatation. We believe that vascular changes directly add to the airway narrowing and hyper-responsiveness by exudation and transudation of proinflammatory mediators, cytokines and growth factors; facilitating trafficking of inflammatory cells; causing oedema of the airway wall and promoting ASM accumulation. One of the key regulators of angiogenesis, vascular endothelial growth factor in concerted action with other endothelial mitogens play pivotal role in regulating bronchial angiogenesis. In this review article we address recent advances in pulmonary angiogenesis and remodelling that contribute in the pathogenesis of chronic airway diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号