Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating
yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell
morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol.
Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose)
medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the
study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The
results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based
on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. 相似文献
Summary Single and multisensor field effect transistors (FET) with a pH-sensitive Si/SiO2/Si3N4/Ta2O5-gate and reference electrode (for single sensor) were developed and used for manufacturing the following biological (Bio)-FETs: for glucose analysis, glucose oxidase-FET (GOD-FET); for urea analysis, urease-FET; and for cephalosporin C analysis, cephalosporinase-FET. The GOD-FETs were integrated into flow injection analysis (FIA) of the Eppendorf variables analyser (EVA) system and used for monitoring the glucose concentration in microbial cultivation and production processes with recombinant Escherichia coli K12 MF, recombinant E. coli JM103, Saccharomyces cerevisiae H620, and Candida boidinii. Urease-FET-FIA was used to monitor the urea concentration in a simulated cultivation of Cephalosporium acremonium and urease-FET-FIA and GOD-FET-FIA for the monitoring of urea and glucose concentrations in simulated S. cerevisiae cultivations. 相似文献
Protoplasma - Growth and production kinetics of three important glycoalkaloids viz. α-solanine, solanidine, and solasodine in two contrasting prickly and prickleless plants of Solanum viarum... 相似文献
A white-colony-forming, facultative anaerobic, motile and Gram-stain-negative bacterium, designated G-1-2-2 T was isolated from soil of agriculture field near Kyonggi University, Republic of Korea. Strain G-1-2-2 T synthesized the polyhydroxybutyrate and could grow at 10–35 °C. The phylogenetic analysis based on 16S rRNA gene sequence showed that, strain G-1-2-2 T formed a lineage within the family Comamonadaceae and clustered as a member of the genus Ramlibacter. The 16S rRNA gene sequence of strain G-1-2-2 T showed high sequence similarities with Ramlibacter ginsenosidimutans BXN5-27 T (97.9%), Ramlibacter monticola G-3-2 T (97.9%) and Ramlibacter alkalitolerans CJ661T (97.5%). The sole respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and an unidentified phospholipid. The principal cellular fatty acids were C16:0, cyclo-C17:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The genome of strain G-1-2-2 T was 7,200,642 bp long with 13 contigs, 6,647 protein-coding genes, and DNA G?+?C content of 68.9%. The average nucleotide identity and in silico DNA–DNA hybridization values between strain G-1-2-2 T and close members were?≤?81.2 and 24.1%, respectively. The genome of strain G-1-2-2 T showed eight putative biosynthetic gene clusters responsible for various secondary metabolites. Genome mining revealed the presence of atoB, atoB2, phaS, phbB, phbC, and bhbD genes in the genome which are responsible for polyhydroxybutyrate biosynthesis. Based on these data, strain G-1-2-2 T represents a novel species in the genus Ramlibacter, for which the name Ramlibacter agri sp. nov. is proposed. The type strain is G-1-2-2 T (=?KACC 21616 T?=?NBRC 114389 T).
Earlier we showed that chronic administration of engineered nanoparticles (NPs) from metals, e.g., Cu, Ag, or Al (50–60 nm, 50 mg/kg, i.p. daily for 1 week) alter blood–brain barrier (BBB) disruption and induce brain pathology in adult rats (age 18 to 22 weeks). However, effects of size-dependent neurotoxicity of NPs in vivo are still largely unknown. In present investigation, we examined the effects of different size ranges of the above-engineered NPs on brain pathology in rats. Furthermore, the fact that age is also an important factor in brain pathology was also investigated in our rat model. Our results showed that small-sized NPs induced the most pronounced BBB breakdown (EBA +480 to 680 %; radioiodine +850 to 1025 %), brain edema formation (+4 to 6 %) and neuronal injuries (+30 to 40 %), glial fibrillary acidic protein upregulation (+40 to 56 % increase), and myelin vesiculation (+30 to 35 % damage) in young animals as compared to controls. Interestingly, the oldest animals (30 to 35 weeks of age) also showed massive brain pathology as compared to young adults (18 to 20 weeks old). The Ag and Cu exhibited greater brain damage compared with Al NPs in all age groups regardless of their size. This suggests that apart from the size, the composition of NPs is also important in neurotoxicity. The very young and elderly age groups exhibited greater neurotoxicity to NPs suggests that children and elderly are more vulnerable to NPs-induced brain damage. The NPs-induced brain damage correlated well with the upregulation of neuronal nitric oxide synthase activity in the brain indicating that NPs-induced neurotoxicity may be mediated via increased production of nitric oxide, not reported earlier. 相似文献
During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an ‘affinity-capture’ procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3′-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3′-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3′-blocked intermediate. 相似文献
Probiotics and Antimicrobial Proteins - The outbreak of diseases leading to substantial loss is a major bottleneck in aquaculture. Over the last decades, the concept of using feed probiotics was... 相似文献
Rotavirus, a nonturreted member of the Reoviridae, is the causative agent of severe infantile diarrhea. The double-stranded RNA genome encodes six structural proteins that make up the triple-layer particle. X-ray crystallography has elucidated the structure of one of these capsid proteins, VP6, and two domains from VP4, the spike protein. Complementing this work, electron cryomicroscopy (cryoEM) has provided relatively low-resolution structures for the triple-layer capsid in several biochemical states. However, a complete, high-resolution structural model of rotavirus remains unresolved. Combining new structural analysis techniques with the subnanometer-resolution cryoEM structure of rotavirus, we now provide a more detailed structural model for the major capsid proteins and their interactions within the triple-layer particle. Through a series of intersubunit interactions, the spike protein (VP4) adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside one of the three types of aqueous channels between VP7 and VP6 capsid layers. While the trimeric base suggests the presence of three VP4 molecules in one spike, only hints of the third molecule are observed above the capsid surface. Beyond their interactions with VP4, the interactions between VP6 and VP7 subunits could also be readily identified. In the innermost T=1 layer composed of VP2, visualization of the secondary structure elements allowed us to identify the polypeptide fold for VP2 and examine the complex network of interactions between this layer and the T=13 VP6 layer. This integrated structural approach has resulted in a relatively high-resolution structural model for the complete, infectious structure of rotavirus, as well as revealing the subtle nuances required for maintaining interactions in such a large macromolecular assembly. 相似文献