首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   793篇
  免费   32篇
  2023年   8篇
  2022年   16篇
  2021年   22篇
  2020年   13篇
  2019年   15篇
  2018年   29篇
  2017年   18篇
  2016年   27篇
  2015年   32篇
  2014年   44篇
  2013年   72篇
  2012年   64篇
  2011年   52篇
  2010年   37篇
  2009年   33篇
  2008年   42篇
  2007年   35篇
  2006年   30篇
  2005年   33篇
  2004年   28篇
  2003年   35篇
  2002年   23篇
  2001年   9篇
  2000年   10篇
  1999年   12篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   3篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
排序方式: 共有825条查询结果,搜索用时 140 毫秒
61.
A mononuclear (1:1) copper complex of curcumin, a phytochemical from turmeric, was synthesized and examined for its superoxide dismutase (SOD) activity. The complex was characterized by elemental analysis, IR, NMR, UV-VIS, EPR, mass spectroscopic methods and TG-DTA, from which it was found that a copper atom is coordinated through the keto-enol group of curcumin along with one acetate group and one water molecule. Cyclic voltammetric studies of the complex showed a reversible Cu(2+)/Cu(+) couple with a potential of 0.402 V vs NHE. The Cu(II)-curcumin complex is soluble in lipids and DMSO, and insoluble in water. It scavenges superoxide radicals with a rate constant of 1.97 x 10(5) M(-1) s(-1) in DMSO determined by stopped-flow spectrometer. Subsequent to the reaction with superoxide radicals, the complex was found to be regenerated completely, indicating catalytic activity in neutralizing superoxide radicals. Complete regeneration of the complex was observed, even when the stoichiometry of superoxide radicals was 10 times more than that of the complex. This was further confirmed by EPR monitoring of superoxide radicals. The SOD mimicking activity of the complex was determined by xanthine/xanthine oxidase assay, from which it has been found that 5 microg of the complex is equivalent to 1 unit of SOD. The complex inhibits radiation-induced lipid peroxidation and shows radical-scavenging ability. It reacts with DPPH radicals with rate constant 10 times less than that of curcumin. Pulse radiolysis-induced one-electron oxidation of the complex by azide radicals in TX-100 micellar solutions produced strongly absorbing ( approximately 500 nm) phenoxyl radicals, indicating that the phenolic moiety of curcumin remained intact on complexation with copper. The results confirm that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential. Quantum chemical calculations with density functional theory have been performed to support the experimental observations.  相似文献   
62.
Rhizobium sp. strain NGR234, which is capable of interacting with a large number of legumes, utilizes a variety of signaling molecules to establish nitrogen-fixing symbioses. Among these are nodulation outer proteins (Nops) that transit through a type III secretion system (TTSS). Abolition of Nop secretion affects nodulation of certain legumes. Under free-living conditions, the secretion of Nops can be induced by the addition of flavonoids. Here, we show that an in-frame deletion of nopA abolishes secretion of all other Nops and has the same impact on nodule formation as mutations that lead to a nonfunctional TTSS. This secretion-minus phenotype of the nopA mutant, as well as bioinformatics analysis of NopA itself, suggests that NopA could be an external component of the TTSS. Electron microscopy showed that NGR234 synthesizes fibrillar structures on the cell surface in a flavonoid-inducible and NopA-dependent manner. Purification of the macromolecular surface appendages revealed that NopA is a major component of these structures.  相似文献   
63.

Background  

Our objective was to quantify and compare the extent of synchronization of the spatial-temporal myometrial activity over the human uterus before and during a contraction using transabdominal magnetomyographic (MMG) recordings. Synchronization can be an important indicator for the quantification of uterine contractions.  相似文献   
64.
Aspartate kinase (AK) and homoserine dehydrogenase (HSD) function as key regulatory enzymes at branch points in the aspartate amino acid pathway and are feedback-inhibited by threonine. In plants the biochemical features of AK and bifunctional AK-HSD enzymes have been characterized, but the molecular properties of the monofunctional HSD remain unexamined. To investigate the role of HSD, we have cloned the cDNA and gene encoding the monofunctional HSD (GmHSD) from soybean. Using heterologously expressed and purified GmHSD, initial velocity and product inhibition studies support an ordered bi bi kinetic mechanism in which nicotinamide cofactor binds first and leaves last in the reaction sequence. Threonine inhibition of GmHSD occurs at concentrations (Ki = 160–240 mm) more than 1000-fold above physiological levels. This is in contrast to the two AK-HSD isoforms in soybean that are sensitive to threonine inhibition (Ki∼150 μm). In addition, GmHSD is not inhibited by other aspartate-derived amino acids. The ratio of threonine-resistant to threonine-sensitive HSD activity in soybean tissues varies and likely reflects different demands for amino acid biosynthesis. This is the first cloning and detailed biochemical characterization of a monofunctional feedback-insensitive HSD from any plant. Threonine-resistant HSD offers a useful biotechnology tool for manipulating the aspartate amino acid pathway to increase threonine and methionine production in plants for improved nutritional content.  相似文献   
65.
In response to ionizing radiation (IR), cells delay cell cycle progression and activate DNA repair. Both processes are vital for genome integrity, but the mechanisms involved in their coordination are not fully understood. In a mass spectrometry screen, we identified the adenosine triphosphate–dependent chromatin-remodeling protein CHD4 (chromodomain helicase DNA-binding protein 4) as a factor that becomes transiently immobilized on chromatin after IR. Knockdown of CHD4 triggers enhanced Cdc25A degradation and p21Cip1 accumulation, which lead to more pronounced cyclin-dependent kinase inhibition and extended cell cycle delay. At DNA double-strand breaks, depletion of CHD4 disrupts the chromatin response at the level of the RNF168 ubiquitin ligase, which in turn impairs local ubiquitylation and BRCA1 assembly. These cell cycle and chromatin defects are accompanied by elevated spontaneous and IR-induced DNA breakage, reduced efficiency of DNA repair, and decreased clonogenic survival. Thus, CHD4 emerges as a novel genome caretaker and a factor that facilitates both checkpoint signaling and repair events after DNA damage.  相似文献   
66.
Phosphate-solubilizing bacteria (PSBs) were isolated from different plant rhizosphere soils of various agroecological regions of India. These isolates showed synthesis of pyrroloquinoline quinone (PQQ), production of gluconic acid, and release of phosphorus from insoluble tricalcium phosphate. The bacterial isolates synthesizing PQQ also showed higher tolerance to ultraviolet C radiation and mitomycin C as compared to Escherichia coli but were less tolerant than Deinococcus radiodurans. Unlike E. coli, PSB isolates showed higher tolerance to DNA damage when grown in the absence of inorganic phosphate. Higher tolerance to ultraviolet C radiation and oxidative stress in these PSBs grown under PQQ synthesis inducible conditions, namely phosphate starvation, might suggest the possible additional role of this redox cofactor in the survival of these isolates under extreme abiotic stress conditions.  相似文献   
67.
Sinorhizobium fredii USDA191 is a Gram-negative bacterium capable of forming nitrogen-fixing nodules on soybean roots. The USDA191 idhA gene encoding myo-inositol dehydrogenase, an enzyme necessary for myo-inositol utilization, is known to be involved in competitive nodulation and nitrogen fixation. In Bacillus subtilis, myo-inositol dehydrogenase catalyzes the first step of the myo-inositol catabolic pathway. Recently iolE was identified as the gene encoding 2-keto-myo-inositol dehydratase, which catalyzes the second step in the pathway. Here we report the presence of 2-keto-myo-inositol dehydratase activity in free-living USDA191 cells cultured in a medium containing myo-inositol. An iolE ortholog was cloned from USDA191. USDA191 iolE was expressed in Escherichia coli as a His(6)-tag fusion and purified to exhibit 2-keto-myo-inositol dehydratase activity. Inactivation of USDA191 iolE led to defective myo-inositol utilization. USDA191 iolE partially complemented a B. subtilis iolE deficient mutant. These results suggest that S. fredii USDA191 utilizes a myo-inositol catabolic pathway, analogous to that of B. subtilis, involving at least idhA and iolE.  相似文献   
68.
Atherigona soccata (Rondani) (Diptera: Muscidae) is one of the most important pests of sorghum, Sorghum bicolor (L.) Moench, in Asia, Africa, and the Mediterranean Europe. Exploitation of cytoplasmic male sterility (CMS) for hybrid production has resulted in considerable narrowing of the genetic base and may increase the vulnerability of this crop to insect pests. Therefore, we studied the expression of different mechanisms of resistance in sorghum to A. soccata in CMS (A) and maintainer (B) lines of 12 genotypes under field and greenhouse conditions. The CMS lines of A. soccata-resistant genotypes were preferred for oviposition (78.5 versus 71.5% plants with eggs) and suffered greater deadheart incidence (47.6 versus 41.6%) than the corresponding maintainer lines, whereas such differences were not apparent in CMS lines belonging to the susceptible genotypes (92.7 versus 92.3% plants with eggs and 75.6 versus 74.6% deadhearts) under multichoice field conditions. Similar differences also were observed under controlled conditions in the greenhouse. The larval period (9.0 versus 8.8 d) and pupal mortality (18.4 versus 13.4%) were greater on maintainer lines than that on the CMS lines in the resistant group. The male and female pupal weights, fecundity, and antibiosis index were greater on the CMS than on the maintainer lines. The maintainer lines showed better recovery resistance than the CMS lines, but no such differences were observed in tiller deadhearts. The differences in susceptibility to A. soccata were greater in the A. soccata resistant CMS and maintainer lines than in the CMS and maintainer lines belonging to susceptible genotypes. Conversion of A. soccata-resistant genotypes into alternate less susceptible cytoplasmic backgrounds may be undertaken for developing sorghum hybrids with stable resistance to A. soccata.  相似文献   
69.
Proliferation of pulmonary artery smooth muscle cells (PASMCs) appears to play a significant role in chronic pulmonary hypertension. The proliferation of PASMCs is strongly inhibited by some commercial heparin preparations. Heparin fragments were prepared by periodate treatment, followed by sodium borohydride reduction, to enhance potency. The tributylammonium salt of this fragmented heparin was O-acylated with hexanoic anhydride. Gradient polyacrylamide gel electrophoresis showed that the major heparin fragment contained eight disaccharide units. NMR analysis showed that approximately one hexanoyl group per disaccharide residue was present. The O-hexanoyl heparin fragments were assayed for growth inhibitory effect on bovine PASMCs in culture. This derivative was found to be more effective in growth inhibition of bovine PASMCs in culture than the heparin from which it was derived. In the future, it is envisioned that this or similar derivatives may be an effective treatment for pulmonary hypertension.  相似文献   
70.
The molecular basis of the pathogenesis of pulmonary hypertension (PH) associated with congenital diaphragmatic hernia (CDH) is poorly understood. Variation in responses to therapeutic strategies such as nitric oxide (NO) inhalation and extracorporeal membrane oxygenation (ECMO) in patients with CDH remains a major problem in pediatric critical care. We investigated the expression pattern of NO-generating enzyme nitricoxide synthase (NOS) (both endothelial [eNOS] and inducible [iNOS] isoforms) in the lungs of CDH patients with PH and evaluated the influence of ECMO on the expression levels of these genes in an attempt to understand the underlying molecular mechanisms. Lung autopsy specimens from 23 cases of CDH not treated by ECMO and 10 ECMO-treated CDH cases were studied and compared with 11 age-matched controls. Expression of iNOS and eNOS was assessed by immunohistochemistry and video-image analysis. Expression of iNOS in the endothelium of small pulmonary arteries (external diameter≤200 μm) was significantly lower in CDH cases that had not received ECMO treatment (p=0.04). ECMO-treated CDH cases did not differ from controls in iNOS expression. Alveclar macrophages (CD68+ cells), of which the number also was increased, showed significantly enhanced staining for iNOS in CDH cases (p=0.03) compared with controls. The observed decrease in pulmonary expression of iNOS in patients with CDH suggests a potential role in the pathogenesis of pulmonary hypertension in newborns with CDH. ECMO treatment was correlated with induction of this enzyme, which may result in NO-mediated vasodilatation and thereby transiently reduce the pulmonary hypertension in CDH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号