首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1629篇
  免费   98篇
  2023年   9篇
  2022年   25篇
  2021年   36篇
  2020年   23篇
  2019年   30篇
  2018年   46篇
  2017年   25篇
  2016年   44篇
  2015年   61篇
  2014年   72篇
  2013年   125篇
  2012年   128篇
  2011年   98篇
  2010年   65篇
  2009年   63篇
  2008年   87篇
  2007年   84篇
  2006年   59篇
  2005年   61篇
  2004年   62篇
  2003年   65篇
  2002年   56篇
  2001年   25篇
  2000年   26篇
  1999年   31篇
  1998年   14篇
  1997年   10篇
  1996年   11篇
  1995年   8篇
  1992年   13篇
  1991年   12篇
  1990年   11篇
  1989年   18篇
  1988年   14篇
  1987年   11篇
  1986年   8篇
  1985年   12篇
  1984年   8篇
  1983年   13篇
  1982年   10篇
  1981年   14篇
  1980年   14篇
  1979年   21篇
  1978年   8篇
  1976年   10篇
  1974年   7篇
  1973年   14篇
  1972年   7篇
  1971年   8篇
  1970年   7篇
排序方式: 共有1727条查询结果,搜索用时 31 毫秒
101.
Rhizobium sp. SIN-1, a nitrogen-fixing symbiont of Sesbania aculeata and other tropical legumes, carries two copies of nodD, both on a sym plasmid. We have isolated these two nodD genes by screening a genomic library of Rhizobium sp. SIN-1 with a nodD probe from Sinorhizobium meliloti. Nucleotide sequence and the deduced amino acid sequence analysis indicated that the nodD genes of Rhizobium sp. SIN-1 are most closely related to those of R. tropici and Azorhziobium caulinodans. Rhizobium sp. SIN-1 nodD1 complemented a S. meliloti nodD1D2D3 negative mutant for nodulation on alfalfa, but failed to complement a nodD1 mutant of S. fredii USDA191 for soybean nodulation. A hybrid nodD gene, containing the N-terminus of S. fredii USDA191 nodD1 and the C-terminus of Rhizobium sp. SIN-1 nodD1, complemented the nodD1 negative mutant of USDA191 for nodulation on soybean. Received: 17 January 2002 / Accepted: 18 February 2002  相似文献   
102.
Many lines of evidence show that membranes contain microdomains, "lipid rafts", that are different from the rest of the membrane in specific lipid and protein composition. In several biological systems, they were shown to be necessary for trafficking and signal transduction. Here, we investigate if lipid rafts have a role in the regulation of the G protein-mediated pathway underlying vertebrate phototransduction. Photoreceptor membranes contain detergent-resistant membrane (DRM) rafts. Rhodopsin and cGMP phosphodiesterase are found in raft and nonraft portions of the membrane; guanylate cyclase is found exclusively in the raft. Distribution of these proteins does not change in the light or dark. In contrast, the G protein transducin, the RGS9-1-Gbeta5L complex, and the p44 isoform of arrestin undergo dramatic translocation to the raft upon illumination. Phosphorylation of RGS9-1 occurs exclusively in the raft. GTPgammaS or pertussis toxin prevent the light-mediated translocation of transducin and RGS9-1, whereas AlF(minus sign)(4) causes both proteins to move to the raft in the dark. This shows that the Galphat-RGS9-1-Gbeta5L complex has the highest affinity to rafts in the transition state of the GTPase. GTPgammaS binds to transducin at a significantly slower rate in the raft, indicating that this translocation results in a reduced rhodopsin-transducin coupling. Thus, an external signal can rearrange components of a G protein pathway in specific domains of the cell membrane, changing its signaling properties. These findings could reveal a novel mechanism utilized by the cells for regulation of G protein-mediated signal transduction.  相似文献   
103.
A mathematical model describing the dynamical interactions of bidirectional associative memory networks involving transmission delays is considered. The influence of a dead zone or a zone of noactivation on the global stability is investigated and various easily verifiable sets of sufficient conditions are established. The asymptotic nature of solutions when the given system of equations does not possess an equilibrium pattern is discussed.  相似文献   
104.
Schizosaccharomyces pombe cells divide by medial fission through the use of an actomyosin-based contractile ring. Constriction of the actomyosin ring is accompanied by the centripetal addition of new membranes and cell wall material. In this article, we characterize the mechanism responsible for the localization of Cps1p, a septum-synthesizing 1,3-beta-glucan synthase, to the division site during cytokinesis. We show that Cps1p is an integral membrane protein that localizes to the cell division site late in anaphase. Neither F-actin nor microtubules are essential for the initial assembly of Cps1p to the medial division site. F-actin, but not microtubules, is however important for the eventual incorporation of Cps1p into the actomyosin ring. Assembly of Cps1p into the cell division ring is also dependent on the septation-inducing network (SIN) proteins that regulate division septum formation after assembly of the actomyosin ring. Fluorescence-recovery after-photobleaching experiments reveal that Cps1p does not diffuse appreciably within the plasma membrane and is retained at the division site by a mechanism that does not depend on an intact F-actin cytoskeleton. We conclude that the actomyosin ring serves as a spatial cue for Cps1p localization, whereas the maintenance of Cps1p at the division site occurs by a novel F-actin- and microtubule-independent mechanism. Furthermore, we propose that the SIN proteins ensure localization of Cps1p at the appropriate point in the cell cycle.  相似文献   
105.
Plant growth and development is regulated by complex interactions among different hormonal, developmental and environmental signalling pathways. Isolation of mutants in these processes is a powerful approach to dissect unknown mechanisms in regulatory networks. The plant hormones abscisic acid (ABA) and auxin are involved in vegetative, developmental and environmental growth responses, including cell division and elongation, vascular tissue differentiation and stress adaptation. The uidA (-glucuronidase; GUS) reporter gene driven by the carrot (Daucus carota) late embryogenesis-abundant Dc3 promoter in transgenic Arabidopsis thaliana seedlings is ABA-inducible in the root zone of elongation and vasculature. We show here that the ABA-insensitive2-1 mutation (abi2) reduces ABA-inducible Dc3-GUS expression in these root tissues. Dc3-GUS expression is also induced in root cortex cells by indole-3-acetic acid. We mutagenized, with ethyl methane sulfonate, 5100 M1 abi2/abi2 homozygous plants of a line that carries two independent Dc3-GUS reporter genes and screened M2 clonal lines for ABA-inducible Dc3-GUS expression in roots. We isolated two novel single-gene nuclear mutants, harlequin (hlq) and short blue root (sbr), that ectopically express Dc3-GUS in roots and have pleiotropic effects on morphogenesis. The hlq mutant expresses Dc3-GUS in a checkered pattern in epidermis of roots and hypocotyls, accumulates callose and has deformed and collapsed epidermal cells and abnormal and reduced root hairs and leaf trichomes. It (hlq) is also dwarfed, skotomorphogenic and sterile. The sbr mutant is a seedling-lethal dwarf that over-expresses Dc3-GUS in the root and has radially swollen epidermal cells in the root and hypocotyl, supernumerary cell number in the root cortex and epidermis, abnormal vasculature, and abnormal epidermal cell patterning in cotyledons and leaves. It (sbr) also exhibits a semidominant root phenotype of reduced growth and lateral root initiation. The hlq and sbr mutants are not rescued by exogenous application of plant growth regulators. The hlqand sbr mutants do not require the abi2-1 mutant gene for their phenotypes and map to chromosome III and I, respectively. Further characterization of the hlq and sbr phenotypes and genes may provide insights into the relationship of hormone- and stress-regulated gene expression to morphogenesis and plant growth.  相似文献   
106.
Piscine DAX1 and SHP cDNAs with an open reading frame encoding 296 and 258 amino acid residues, respectively, as well as SHP partial gene fragment, were cloned from Nile tilapia. Phylogenetic analyses of DAX1s, SHPs, and homologous EST fragments indicate that DAX1 and SHP are conserved in gene structure and are present throughout vertebrates. A single band of approximately 1.4kb for DAX1 and of approximately 1.2kb for SHP was detected in the Northern blot analysis. Tissue distribution analysis by RT-PCR showed that fish DAX1 and SHP mRNAs are widely expressed in adult tissues, with the most abundant expression in gonads and liver, respectively. DAX1 and SHP were also detected in gonads of both sexes at 5-90 days after hatching (dah). However, the expression of DAX1 is weak at 5 and 10dah and then significantly up-regulated between 10 and 15dah, whereas the expression of SHP is moderate and consistent during the ontogeny.  相似文献   
107.
108.
The objective of this study was to measure relationships between plasma zinc (Zn) concentrations and Zn kinetic parameters and to measure relationships of Zn status with taste acuity, food frequency, and hair Zn in humans. The subjects were 33 premenopausal women not taking oral contraceptives and dietary supplements containing iron and Zn. Main outcomes were plasma Zn concentrations, Zn kinetic parameters based on the three-compartment mammillary model using 67Zn as a tracer, electrical taste detection thresholds, and food frequencies. Lower plasma Zn was significantly (P < 0.01) associated with smaller sizes of the central and the lesser peripheral Zn pools, faster disappearance of tracer from plasma, and higher transfer rate constants from the lesser peripheral pool to the central pool and from the central pool to the greater peripheral pool. The break points in the plasma Zn-Zn kinetics relationship were found between 9.94 and 11.5 micromol/l plasma Zn. Smaller size of the lesser peripheral pool was associated with lower frequency of beef consumption and higher frequency of bran breakfast cereal consumption. Hypozincemic women with plasma Zn <10.7 micromol/l or 700 ng/ml had decreased thresholds of electrical stimulation for gustatory nerves. Our results based on Zn kinetics support the conventional cutoff value of plasma Zn (10.7 micromol/l or 700 ng/ml) between normal and low Zn status.  相似文献   
109.
Acetylcholinesterase purified from cobra (Naja naja) venom exhibits a serotonin-sensitive aryl acylamidase activity. Both acetylcholinesterase and aryl acylamidase activities co-eluted in column chromatographic procedures (Sephadex G-75 and Zinc-Sepharose), co-migrated on polyacrylamide gel electrophoresis, co-immunoprecipitated by anti-snake venom antibody and showed the same heat denaturation profile at 40 degrees C. Further, several potent acetylcholinesterase inhibitors at different concentrations inhibited the cholinesterase and aryl acylamidase activities to the same extent. It is concluded that in cobra venom, acetylcholinesterase is associated with a serotonin-sensitive aryl acylamidase activity similar to earlier observations made with acetylcholinesterase from different sources.  相似文献   
110.
Protein kinase C (PKC) plays a critical role in signal transduction, mediating various cellular events critical for normal development, including that of the palate. In vivo and in vitro studies suggest the relevance of the inhibition of PKC by the mycotoxin, secalonic acid D (SAD), to its induction of cleft palate (CP) in mice. In the present study, temporal and spatial expression and the activity of various PKC isoenzymes were studied in the control and SAD-exposed murine embryonic palate during gestational days (GD) 12-14.5 by western blotting, immunohistochemistry, and phosphotransfer assay. The Ca2+-dependent isoenzymes, PKC alpha and PKC betaII, showed significant expression on GD 12.0, which gradually decreased through GD 14.5, whereas PKC betaI and PKC gamma were negligible throughout. All Ca2+-independent isoenzymes (epsilon, delta, and zeta) were expressed more abundantly and, in contrast to the Ca2+-dependent ones, progressively increased with age. SAD failed to alter this pattern of expression but enhanced the phosphorylation of PKC epsilon throughout development. Immunohistochemical analysis revealed an isoenzyme-specific distribution of PKC between the epithelium and mesenchyme. As expected, SAD significantly inhibited the total Ca2+-dependent PKC activity in palatal extracts. Although total Ca2+-independent PKC activity in palatal extracts was unaffected by SAD, individual pure isoenzymes were either selectively inhibited (PKC zeta), stimulated (PKC delta), or unaffected (PKC epsilon) by SAD. These results show that PKC isoenzymes exhibit dynamic temporal and spatial patterns of expression and activity in the developing palate and that the induction of CP by SAD is associated with an alteration in their activation and/or activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号