首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   7篇
  157篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   9篇
  2015年   9篇
  2014年   6篇
  2013年   14篇
  2012年   14篇
  2011年   10篇
  2010年   7篇
  2009年   3篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1988年   4篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1972年   2篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
141.
D L Baly  I Lee  R Doshi 《FEBS letters》1988,239(1):55-58
Manganese-deficient rats exhibited seven-fold lower preproinsulin mRNA levels compared to control, as detected by dot blot hybridization of both total and poly(A)+ RNA using a preproinsulin cDNA probe. No differences in the size of the insulin mRNA were observed. Thus, decreased mRNA levels may be a major contributing factor to the decreased insulinogenesis observed in manganese-deficient rats.  相似文献   
142.

We demonstrate the optical response of metal nanoparticles and their interaction with organic-inorganic perovskite (methyl ammonia lead halide (CH3NH3PbI3)) environment using discrete dipole approximation (DDA) simulation technique. Important optical properties like absorption, scattering, and electric field calculations for metal nanoparticle using different geometry have been analyzed. The metal nanoparticles embedded in the perovskite media strongly support surface plasmon resonances (SPRs). The plasmonic interaction of metal nanoparticles with perovskite matrix is a strong function of MNP’s shape, size, and surrounding environment that can manipulate the optical properties considerably. The cylindrical shape of MNPs embedded in perovskite environment supports the SPR which is highly tunable to subwavelength range of 400–800 nm. Wide range of particle sizes has been selected for Ag, Au, and Al spherical and cylindrical nanostructures surrounded by perovskite matrix for simulation. The chosen hybrid material and anisotropy of structure together make a complex function for resonance shape and width. Among all MNPs, 70-nm spherical silver nanoparticle (NP) and cylindrical Ag NP having diameter of 50 nm and length of 70 nm (aspect ratio 1.4) generate strong electric field intensity that facilitates increased photon absorption. The plasmonic perovskite interaction plays an important role to improve the absorption of photon inside the thin film perovskite environment that may be applicable to photovoltaics and photonics.

  相似文献   
143.
144.
We evaluated the potential of an investigational histone methylation reversal agent, 3-deazaneplanocin A (DZNep), in improving the chemosensitivity of pancreatic cancer to nucleoside analogs (i.e., gemcitabine). DZNep brought delayed but selective cytotoxicity to pancreatic cancer cells without affecting normal human pancreatic ductal epithelial (HPDE) cells. Co-exposure of DZNep and gemcitabine induced cytotoxic additivity or synergism in both well- and poorly-differentiated pancreatic cell lines by increased apoptosis. In contrast, DZNep exerted antagonism with gemcitabine against HPDE cells with significant reduction in cytotoxicity compared with the gemcitabine-alone regimen. DZNep marginally depended on purine nucleoside transporters for its cytotoxicity, but the transport dependence was circumvented by acyl derivatization. Drug exposure studies revealed that a short priming with DZNep followed by gemcitabine treatment rather than co-treatment of both agents to produce a maximal chemosensitization response in both gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. DZNep rapidly and reversibly decreased trimethylation of histone H3 lysine 27 but increased trimethylation of lysine 9 in an EZH2- and JMJD1A/2C-dependent manner, respectively. However, DZNep potentiation of nucleoside analog chemosensitization was found to be temporally coupled to trimethylation changes in lysine 27 and not lysine 9. Polymeric nanoparticles engineered to chronologically release DZNep followed by gemcitabine produced pronounced chemosensitization and dose-lowering effects. Together, our results identify that an optimized DZNep exposure can presensitize pancreatic cancer cells to anticancer nucleoside analogs through the reversal of histone methylation, emphasizing the promising clinical utilities of epigenetic reversal agents in future pancreatic cancer combination therapies.  相似文献   
145.

Objectives

Caco-2 monolayers are one of the most widely used in vitro models for prediction of intestinal permeability of therapeutic molecules. However, the conventional Caco-2 monolayer model has several drawbacks including labor-intensive culture process, unphysiological growth conditions, lack of reproducibility and limited throughput. Here, we report on the use of 3-day Caco-2 monolayers for assessing permeability of polypeptide drugs.

Methods

The 3-day monolayers were grown in a commercially available transwell set-up, which facilitates rapid development of the Caco-2 monolayers in an intestinal epithelial differentiation mimicking environment. This set-up included use of serum-free medium of defined composition with supplements such as butyric acid, hormones, growth factors, and other metabolites, reported to regulate the differentiation of intestinal epithelial cells in vivo. We measured permeability of 3 different therapeutic polypeptides; insulin, calcitonin, and exenatide across the monolayer.

Results

Preliminary validation of the monolayer was carried out by confirming dose-dependent permeation of FITC-insulin and sulforhodamine-B. Transport of insulin, calcitonin, and exenatide measured at different loading concentrations suggests that the permeability values obtained with 3-day cultures resemble more closely the values obtained with ex vivo models compared to permeability values obtained with conventional 21-day cultures.

Conclusions

Short-term 3-day Caco-2 monolayers provide new opportunities for developing reproducible and high-throughput models for screening of therapeutic macromolecules for oral absorption.  相似文献   
146.

Background

Increase in the number of multidrug resistant pathogens and the accompanied rise in case fatality rates has hampered the treatment of many infectious diseases including cholera. Unraveling the mechanisms responsible for multidrug resistance in the clinical isolates of Vibrio cholerae would help in understanding evolution of these pathogenic bacteria and their epidemic potential. This study was carried out to identify genetic factors responsible for multiple drug resistance in clinical isolates of Vibrio cholerae O1, serotype Ogawa, biotype El Tor isolated from the patients admitted to the Infectious Diseases Hospital, Kolkata, India, in 2009.

Methodology/Principal Findings

One hundred and nineteen clinical isolates of V. cholerae were analysed for their antibiotic resistance phenotypes. Antibiogram analysis revealed that majority of the isolates showed resistance to co-trimoxazole, nalidixic acid, polymixin B and streptomycin. In PCR, SXT integrase was detected in 117 isolates and its sequence showed 99% identity notably to ICEVchInd5 from Sevagram, India, ICEVchBan5 from Bangladesh and VC1786ICE sequence from Haiti outbreak among others. Antibiotic resistance traits corresponding to SXT element were transferred from the parent Vibrio isolate to the recipient E. coli XL-1 Blue cells during conjugation. Double-mismatch-amplification mutation assay (DMAMA) revealed the presence of Haitian type ctxB allele of genotype 7 in 55 isolates and the classical ctxB allele of genotype 1 in 59 isolates. Analysis of topoisomerase sequences revealed the presence of mutation Ser83 → Ile in gyrA and Ser85→ Leu in parC. This clearly showed the circulation of SXT-containing V. cholerae as causative agent for cholera in Kolkata.

Conclusions

There was predominance of SXT element in these clinical isolates from Kolkata region which also accounted for their antibiotic resistance phenotype typical of this element. DMAMA PCR showed them to be a mixture of isolates with different ctxB alleles like classical, El Tor and Haitian variants.  相似文献   
147.
Acute kidney injury (AKI) is a well-known complication of cisplatin-based chemotherapy; however, its impact on long-term patient survival is unclear. We sought to determine the incidence and risk factors for development of cisplatin-associated AKI and its impact on long-term renal function and patient survival. We identified 233 patients who received 629 cycles of high-dose cisplatin (99±9mg/m2) for treatment of head and neck cancer between 2005 and 2011. These subjects were reviewed for development of AKI. Cisplatin nephrotoxicity (CN) was defined as persistent rise in serum creatinine, with a concomitant decline in serum magnesium and potassium, in absence of use of nephrotoxic agents and not reversed with hydration. All patients were hydrated per protocol and none had baseline glomerular filtration rate (GFR) via CKD-EPI<60mL/min/1.73m2. The patients were grouped based on development of AKI and were staged for levels of injury, per KDIGO-AKI definition. Renal function was assessed via serum creatinine and estimated glomerular filtration rate (eGFR) via CKD-EPI at baseline, 6- and 12-months. Patients with AKI were screened for the absence of nephrotoxic medication use and a temporal decline in serum potassium and magnesium levels. Logistic regression models were constructed to determine risk factors for cisplatin-associated AKI. Twelve-month renal function was compared among groups using ANOVA. Kaplan-Maier curves and Cox proportional hazard models were constructed to study its impact on patient survival. Of 233 patients, 158(68%) developed AKI; 77 (49%) developed stage I, 55 (35%) developed stage II, and 26 (16%) developed stage III AKI. Their serum potassium and magnesium levels correlated negatively with level of injury (p<0.05). African American race was a significant risk factor for cisplatin-associated AKI, OR 2.8 (95% CI 1.3 to 6.3) and 2.8 (95% CI 1.2 to 6.7) patients with stage III AKI had the lowest eGFR value at 12 months (p = 0.05) and long-term patient survival (HR 2.1; p<0.01) than patients with no or lower grades of AKI. Most common causes of death were recurrent cancer (44%) or secondary malignancy elsewhere (40%). Cisplatin-associated severe AKI occurs in 20% of the patients and has a negative impact on long-term renal function and patient survival. PEG tube placement may be protective and should be considered in high risk-patients.  相似文献   
148.
Characterizing the nature of interaction between proteins that have not been experimentally cocrystallized requires a computational docking approach that can successfully predict the spatial conformation adopted in the complex. In this work, the Hydropathic INTeractions (HINT) force field model was used for scoring docked models in a data set of 30 high‐resolution crystallographically characterized “dry” protein–protein complexes and was shown to reliably identify native‐like models. However, most current protein–protein docking algorithms fail to explicitly account for water molecules involved in bridging interactions that mediate and stabilize the association of the protein partners, so we used HINT to illuminate the physical and chemical properties of bridging waters and account for their energetic stabilizing contributions. The HINT water Relevance metric identified the “truly” bridging waters at the 30 protein–protein interfaces and we utilized them in “solvated” docking by manually inserting them into the input files for the rigid body ZDOCK program. By accounting for these interfacial waters, a statistically significant improvement of ~24% in the average hit‐count within the top‐10 predictions the protein–protein dataset was seen, compared to standard “dry” docking. The results also show scoring improvement, with medium and high accuracy models ranking much better than incorrect ones. These improvements can be attributed to the physical presence of water molecules that alter surface properties and better represent native shape and hydropathic complementarity between interacting partners, with concomitantly more accurate native‐like structure predictions. Proteins 2014; 82:916–932. © 2013 Wiley Periodicals, Inc.  相似文献   
149.
150.
The biodegradability of petroleum hydrocarbons such as polycyclic aromatic hydrocarbons (PAHs) and n-branched alkanes etc. of 2T engine oil were studied in aqueous media using bacterial strain isolated from petroleum contaminated soil of high altitude. Out of five petroleum degrading bacterial strain one of the most growing bacteria was identified as Enterobacter strain by morphological, physiological, biochemical and partial sequencing of 16S rDNA. This strain was capable of degrading 75 ± 3% of n-alkanes, 32 ± 5% PAHs, and the abiotic loss was 24 ± 6% during 10 days incubation period. 85 ± 2% of n-alkanes and 51 ± 3% PAHs were biodegraded in 20 days. The abiotic loss during this period was 15 ± 3%. In 30 days of incubation period 98% ± 1% n-alkanes and 75 ± 3% PAHs were degraded. As expected abiotic losses were smaller with increasing long chain alkanes and PAH’s concentration. An increment in oil degradation was correlated to an increase in cell number indicating that the bacterial isolate was responsible for the oil degradation. The hydrocarbon contents were measured by Shimadzu QP-2000 Gas chromatography/mass spectrometry by ULBON HR-1 column.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号