首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   702篇
  免费   41篇
  2021年   9篇
  2020年   6篇
  2018年   9篇
  2017年   6篇
  2016年   9篇
  2015年   17篇
  2014年   19篇
  2013年   35篇
  2012年   38篇
  2011年   28篇
  2010年   18篇
  2009年   21篇
  2008年   17篇
  2007年   23篇
  2006年   18篇
  2005年   20篇
  2004年   14篇
  2003年   19篇
  2002年   19篇
  2001年   11篇
  2000年   25篇
  1999年   17篇
  1998年   13篇
  1997年   11篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1993年   14篇
  1992年   21篇
  1991年   10篇
  1990年   17篇
  1989年   14篇
  1988年   10篇
  1987年   12篇
  1986年   14篇
  1985年   16篇
  1984年   11篇
  1983年   12篇
  1982年   8篇
  1981年   7篇
  1980年   11篇
  1979年   9篇
  1978年   11篇
  1976年   7篇
  1975年   10篇
  1974年   6篇
  1968年   7篇
  1967年   7篇
  1966年   6篇
  1954年   5篇
排序方式: 共有743条查询结果,搜索用时 234 毫秒
31.
We have studied the use of yeast peroxisomal alcohol oxidase (AO) as a model protein for in vitro binding by GroEL. Dilution of denatured AO in neutral buffer leads to aggregation of the protein, which is prevented by the addition of GroEL. Formation of complexes between GroEL and denatured AO was demonstrated by a gel-shift assay using non-denaturing polyacrylamide gel electrophoresis, and quantified by laser-densitometry of the gels. In the presence of MgAMP-PNP or MgADP the affinity of GroEL for AO was enhanced. Under these conditions up to 70% of the purified GroEL formed a complex with this protein. Release was stimulated at room temperature by MgATP, and was further enhanced by addition of GroES.  相似文献   
32.
The possible acidic nature of the peroxisomal matrix present in intact yeast cells was studied immunocytochemically, using the weak base DAMP as a probe. Spheroplasts of methanol-grown Candida boidinii and Hansenula polymorpha were regenerated and incubated with DAMP. After immunogold labelling, using antibodies against DAMP, a specific accumulation of gold particles was observed on the peroxisomal profiles. This labelling was absent in controls, performed in the presence of ionophores or chloroquine. These results support earlier observations, that in intact cells a pH-gradient exists across the peroxisomal membrane. Experiments, carried out on osmotically swollen spheroplasts indicated that maintenance of this pH-gradient is strongly related to the cell's integrity.  相似文献   
33.
Many anaerobic bacteria fix CO2 via the Wood pathway of acetyl-CoA synthesis. Carbon monoxide dehydrogenase (CODH), also called acetyl-CoA synthase, accepts the methyl group from the methylated corrinoid/iron-sulfur protein (C/Fe-SP), binds a carbonyl group from CO, CO2, or the carboxyl of pyruvate, and binds coenzyme A. Then CODH catalyzes the synthesis of acetyl-CoA from these enzyme-bound groups. Here, we have characterized the methyl transfer steps involved in acetyl-CoA synthesis. We have studied the reactions leading to methylation of CODH by methyl iodide and shown an absolute requirement of the C/Fe-SP in this reaction. In addition, we have discovered and partly characterized two previously unknown exchange reactions catalyzed by CODH: between the methylated C/Fe-SP and methylated CODH and between methylated CODH and the methyl moiety of acetyl-CoA. We have performed these two exchange reactions, methylation of the C/Fe-SP, and methylation of CODH at controlled potentials. The rates of all these reactions except the exchange between methylated C/Fe-SP and methylated CODH are accelerated (from 1 to 2 orders of magnitude) when run at low potentials. Our results provide strong evidence for a nucleophilic redox-active metal center on CODH as the initial acceptor of the methyl group from the methylated C/Fe-SP. This metal center also is proposed to be involved in the cleavage of acetyl-CoA in the reverse reaction.  相似文献   
34.
The effect of N-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen, on the energy metabolism in isolated hepatocytes was investigated. Incubation of cells with NAPQI (400 microM) resulted in an immediate uptake into the mitochondria, followed by both reduction and glutathione conjugation of the quinone imine. These reactions were extremely rapid and were associated with depletion of the mitochondrial ATP content (greater than 80% depletion after 1 min exposure). The loss of ATP was accompanied by increases in ADP and AMP, as well as NADP. No effect on mitochondrial NAD was observed during this initial phase. Similar alterations were produced by NAPQI in the cytosolic compartment. Furthermore, incubation of hepatocytes with NAPQI inhibited oxygen consumption by nearly 90% within 10 s. In parallel to these biochemical changes, there was marked bleb formation on the surface of the hepatocytes, which was found to precede cell death (trypan blue uptake). In conclusion, our results demonstrate that during exposure of hepatocytes to NAPQI, dramatic changes in cellular energy metabolism occur. These biochemical alterations may be caused by a rapid decrease in mitochondrial function, and they may play an important role in the initiation of NAPQI-induced cytotoxicity.  相似文献   
35.
4-(3-Bromoacetylpyridinio)butyldiphosphoadenosine was synthesized with a [carbonyl-14C]acetyl label. The reactive coenzyme analogue inactivates alcohol dehydrogenase from Bacillus stearothermophilus by forming a covalent enzyme-coenzyme compound. The inactivation kinetics as well as the spectral properties of the modified enzyme after treatment with sodium hyposulphite suggest that the analogue is bound at the coenzyme binding site. B. stearothermophilus alcohol dehydrogenase modified with 14C-labelled coenzyme analogue and subseqeuntly carboxymethylated with unlabelled iodoacetic acid was digested with trypsin. The radioactive peptide was isolated and sequenced in parallel with the corresponding peptide similarly isolated from unmodified enzyme that had instead been carboxymethylated with iodo[14C]acetic acid. Amino acid and sequence analysis show that Cys-38 of the B. stearothermophilus alcohol dehydrogenase was modified by the reactive coenzyme analogue. This residue is homologous to Cys-43 in yeast alcohol dehydrogenase and Cys-46 in the horse liver enzyme but, unlike the latter two, Cys-38 is not reactive towards iodoacetate in the native bacterial enzyme.  相似文献   
36.
Cells of Hansenula polymorpha growing exponentially on glucose generally contained a single peroxisome of small dimension, irregular in shape and located in close proximity to the cell wall. Crystalline inclusions in the peroxisomal matrix were not observed. Associations of the organelles with one or more strands of endoplasmic reticulum were evident. In stationary phase cells the size of the peroxisomes had increased considerably. They were more cubical in form and showed a partly or completely crystalline matrix.After the transfer of cells growing exponentially on glucose into media containing methanol, large peroxisomes with a partly crystalline matrix developed in the cells within 6 h. These organelles originated from the small peroxisomes in the glucose-grown cells. De novo synthesis of peroxisomes was not observed. Prolonged cultivation in the presence of methanol resulted in a gradual increase in the number of peroxisomes by means of separation of small peroxisomes from mature organelles. During growth of peroxisomes associations with the endoplasmic reticulum remained evident.The increase in volume density of peroxisomes in stationary phase cells grown on glucose and in methanol-grown cells was accompanied by the synthesis of the peroxisomal enzymes alcohol oxidase and catalase. Cytochemical staining techniques revealed that alcohol oxidase activity was only detected when the peroxisomes contained a crystalloid inclusion. Since in peroxisomes of an alcohol oxidase-negative mutant of Hansenula polymorpha crystalline inclusions were never detected, it is concluded that the development of crystalloids inside peroxisomes is due to the accumulation of alcohol oxidase in these organelles.  相似文献   
37.
38.
Repeated outbreaks due to H3N1 low pathogenicity avian influenza viruses (LPAIV) in Belgium were associated with unusually high mortality in chicken in 2019. Those events caused considerable economic losses and prompted restriction measures normally implemented for eradicating high pathogenicity avian influenza viruses (HPAIV). Initial pathology investigations and infection studies suggested this virus to be able to replicate systemically, being very atypical for H3 LPAIV. Here, we investigate the pathogenesis of this H3N1 virus and propose a mechanism explaining its unusual systemic replication capability. By intravenous and intracerebral inoculation in chicken, we demonstrate systemic spread of this virus, extending to the central nervous system. Endoproteolytic viral hemagglutinin (HA) protein activation by either tissue-restricted serine peptidases or ubiquitous subtilisin-like proteases is the functional hallmark distinguishing (H5 or H7) LPAIV from HPAIV. However, luciferase reporter assays show that HA cleavage in case of the H3N1 strain in contrast to the HPAIV is not processed by intracellular proteases. Yet the H3N1 virus replicates efficiently in cell culture without trypsin, unlike LPAIVs. Moreover, this trypsin-independent virus replication is inhibited by 6-aminohexanoic acid, a plasmin inhibitor. Correspondingly, in silico analysis indicates that plasminogen is recruitable by the viral neuraminidase for proteolytic activation due to the loss of a strongly conserved N-glycosylation site at position 130. This mutation was shown responsible for plasminogen recruitment and neurovirulence of the mouse brain-passaged laboratory strain A/WSN/33 (H1N1). In conclusion, our findings provide good evidence in natural chicken strains for N1 neuraminidase-operated recruitment of plasminogen, enabling systemic replication leading to an unusual high pathogenicity phenotype. Such a gain of function in naturally occurring AIVs representing an established human influenza HA-subtype raises concerns over potential zoonotic threats.  相似文献   
39.
Due to the increasing development of anthelmintic resistance in nematodes worldwide, it is important to search for anthelmintic compounds with new modes of action and also to investigate the possibility to combine compounds with possible synergistic effects. There might also be the chance to take advantage of the fact that nematode populations which have developed resistance against one anthelmintic class might respond hypersusceptibly to another drug class. The aim of this study was to investigate responses of Caenorhabditis elegans populations with mutations in neuro-muscular ion channels to different anthelmintic classes. Furthermore, potential synergistic effects between two anthelmintic compounds from different classes, i.e. emodepside and tribendimidine, were studied. Although there was neither a synergistic nor an antagonistic effect between emodepside and tribendimidine, other types of interactions could be identified. The C. elegans GABAA-receptor (GABAA-R) unc-49 mutants, showing decreased emodepside susceptibility, were more susceptible to tribendimidine than wild-type C. elegans. In contrast, the reverse phenomenon – hypersusceptibility to emodepside in tribendimidine resistant acetylcholine-receptor (AChR) loss of function mutants – was not observed. Moreover, the slo-1 mutant strain (completely emodepside resistant) also showed hypersusceptibility to piperazine. Interestingly, neither the GABAA-R unc-49 mutants nor the AChR mutants showed decreased susceptibility against piperazine, although there were some studies that indicated an involvement of GABAA-R or AChR in the piperazine mode of action. In conclusion, the present study provides evidence suggesting that interactions between commercially available anthelmintic drugs with different modes of action might be a relatively common phenomenon but this has to be carefully worked out for each anthelmintic and each anthelmintic drug combination. Moreover, results obtained in C. elegans will have to be confirmed using parasitic nematodes in the future.  相似文献   
40.
Expression and purification of human membrane proteins for structural studies represent a great challenge. This is because micro- to milligram amounts of pure isolated protein are required. To this aim, we successfully expressed the human vitamin C transporter-1 (hSVCT1; SLC23A1) in Xenopus laevis oocytes and isolated highly pure protein in microgram amounts. Recombinant hSVCT1 was functional when expressed in oocytes and glycosylated. Structural analysis of purified hSVCT1 by transmission electron microscopy and single particle analysis unveiled its shape, dimensions and low-resolution structure as well as the existence of a major monomeric and minor dimeric population. Chemical crosslinking of isolated oocyte membranes containing expressed hSVCT1 indicated similar oligomeric states of hSVCT1 in lipid bilayers. This work reports the first purification and structural analysis of a human SVCT protein and opens the way for future functional and structural studies using purified hSVCT1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号