首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676篇
  免费   42篇
  718篇
  2021年   9篇
  2020年   6篇
  2018年   9篇
  2016年   9篇
  2015年   16篇
  2014年   19篇
  2013年   33篇
  2012年   37篇
  2011年   27篇
  2010年   16篇
  2009年   18篇
  2008年   18篇
  2007年   22篇
  2006年   18篇
  2005年   19篇
  2004年   14篇
  2003年   19篇
  2002年   18篇
  2001年   9篇
  2000年   25篇
  1999年   14篇
  1998年   10篇
  1997年   12篇
  1996年   8篇
  1995年   6篇
  1994年   5篇
  1993年   14篇
  1992年   21篇
  1991年   10篇
  1990年   16篇
  1989年   14篇
  1988年   8篇
  1987年   12篇
  1986年   14篇
  1985年   16篇
  1984年   11篇
  1983年   13篇
  1982年   8篇
  1981年   7篇
  1980年   10篇
  1979年   9篇
  1978年   11篇
  1977年   5篇
  1976年   7篇
  1975年   11篇
  1974年   6篇
  1968年   7篇
  1967年   7篇
  1966年   6篇
  1954年   5篇
排序方式: 共有718条查询结果,搜索用时 0 毫秒
11.
Pollen limitation (PL) of seed production creates unique conditions for reproductive adaptation by angiosperms, in part because, unlike under ovule or resource limitation, floral interactions with pollen vectors can contribute to variation in female success. Although the ecological and conservation consequences of PL have received considerable attention in recent times, its evolutionary implications are poorly appreciated. To identify general influences of PL on reproductive adaptation compared with those under other seed-production limits and their implications for evolution in altered environments, we derive a model that incorporates pollination and post-pollination aspects of PL. Because PL always favours increased ovule fertilization, even when population dynamics are not seed limited, it should pervasively influence selection on reproductive traits. Significantly, under PL the intensity of inbreeding does not determine whether outcrossing or autonomous selfing can evolve, although it can affect which response is most likely. Because the causes of PL are multifaceted in both natural and anthropogenically altered environments, the possible outcrossing solutions are diverse and context dependent, which may contribute to the extensive variety of angiosperm reproductive characteristics. Finally, the increased adaptive options available under PL may be responsible for positive global associations between it and angiosperm diversity.  相似文献   
12.
Cells of Hansenula polymorpha growing exponentially on glucose generally contained a single peroxisome of small dimension, irregular in shape and located in close proximity to the cell wall. Crystalline inclusions in the peroxisomal matrix were not observed. Associations of the organelles with one or more strands of endoplasmic reticulum were evident. In stationary phase cells the size of the peroxisomes had increased considerably. They were more cubical in form and showed a partly or completely crystalline matrix.After the transfer of cells growing exponentially on glucose into media containing methanol, large peroxisomes with a partly crystalline matrix developed in the cells within 6 h. These organelles originated from the small peroxisomes in the glucose-grown cells. De novo synthesis of peroxisomes was not observed. Prolonged cultivation in the presence of methanol resulted in a gradual increase in the number of peroxisomes by means of separation of small peroxisomes from mature organelles. During growth of peroxisomes associations with the endoplasmic reticulum remained evident.The increase in volume density of peroxisomes in stationary phase cells grown on glucose and in methanol-grown cells was accompanied by the synthesis of the peroxisomal enzymes alcohol oxidase and catalase. Cytochemical staining techniques revealed that alcohol oxidase activity was only detected when the peroxisomes contained a crystalloid inclusion. Since in peroxisomes of an alcohol oxidase-negative mutant of Hansenula polymorpha crystalline inclusions were never detected, it is concluded that the development of crystalloids inside peroxisomes is due to the accumulation of alcohol oxidase in these organelles.  相似文献   
13.
Expression and purification of human membrane proteins for structural studies represent a great challenge. This is because micro- to milligram amounts of pure isolated protein are required. To this aim, we successfully expressed the human vitamin C transporter-1 (hSVCT1; SLC23A1) in Xenopus laevis oocytes and isolated highly pure protein in microgram amounts. Recombinant hSVCT1 was functional when expressed in oocytes and glycosylated. Structural analysis of purified hSVCT1 by transmission electron microscopy and single particle analysis unveiled its shape, dimensions and low-resolution structure as well as the existence of a major monomeric and minor dimeric population. Chemical crosslinking of isolated oocyte membranes containing expressed hSVCT1 indicated similar oligomeric states of hSVCT1 in lipid bilayers. This work reports the first purification and structural analysis of a human SVCT protein and opens the way for future functional and structural studies using purified hSVCT1.  相似文献   
14.
15.
The mechanism of reductive methylation of cobalamin-dependent methionine synthase (5-methyltetrahydrofolate:homocysteine methyltransferase, EC 2.1.1.13) has been investigated by electron paramagnetic resonance (EPR) spectroelectrochemistry. The enzyme as isolated is inactive, and its UV/visible absorbance and EPR spectra are characteristic of cob(II)alamin. There is an absolute requirement for catalytic amounts of AdoMet and a reducing system for the formation and maintenance of active enzyme during in vitro turnover. The midpoint potentials of the enzyme-bound cob(II)alamin/cob(I)alamin and cob(III)alamin/cob(II)alamin couples have been determined to be -526 +/- 5 and +273 +/- 4 mV (versus the standard hydrogen electrode), respectively. The presence of either CH3-H4folate or AdoMet shifts the equilibrium distribution of cobalamin species observed during reduction by converting cob(I)alamin to methylcobalamin. The magnitude of these shifts is however vastly different, with AdoMet lowering the concentration of cob(II)alamin at equilibrium by a factor of at least 3 X 10(7), while CH3-H4folate lowers it by a factor of 19. These studies of coupled reduction/methylation reactions elucidate the absolute requirement for AdoMet in the in vitro assay system, in which the ambient potential is approximately -350 mV versus the standard hydrogen electrode. At this potential, the equilibrium distribution of cobalamin in the presence of CH3-H4folate would be greatly in favor of the cob(II)alamin species, whereas in the presence of AdoMet the equilibrium favors methylated enzyme. In these studies, a base-on form of cob(II)alamin in which the dimethylbenzimidazole substituent of the corrin ring is the lower axial ligand for the cobalt has been observed for the first time on methionine synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
16.
Lateral assemblies of glycolipids and cholesterol, “rafts,” have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T–lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.  相似文献   
17.
18.
19.
20.
Lawrence D. Harder 《Oecologia》1983,57(1-2):274-280
Summary The time required for a bumble bee to visit a flower is affected by the length of the bee's glossa and its body weight, and by the depth of the flower and the volume of nectar it contains. Probing time is comprised of two components: access time and ingestion time. Access time increases linearly with flower depth, but ingestion time varies with flower depth only in flowers deeper than the length of the bee's glossa, due to a decline in the rate of ingestion of nectar. Probing time therefore increases gradually with increasing depth for flowers shallower than the bee's glossa, but beyond that depth it increases much more rapidly. The relation of probing time to flower depth influences the foraging efficiency and choice of flowers by bumble bees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号