首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   32篇
  国内免费   1篇
  2023年   3篇
  2022年   3篇
  2021年   13篇
  2020年   6篇
  2019年   8篇
  2018年   11篇
  2017年   7篇
  2016年   5篇
  2015年   21篇
  2014年   26篇
  2013年   17篇
  2012年   30篇
  2011年   22篇
  2010年   14篇
  2009年   17篇
  2008年   21篇
  2007年   18篇
  2006年   14篇
  2005年   10篇
  2004年   15篇
  2003年   14篇
  2002年   8篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
31.
Existing magnetic resonance reporter genes all rely on the presence of (super)paramagnetic substances and employ water relaxation to gain contrast. We designed a nonmetallic, biodegradable, lysine rich-protein (LRP) reporter, the prototype of a potential family of genetically engineered reporters expressing artificial proteins with frequency-selective contrast. This endogenous contrast, based on transfer of radiofrequency labeling from the reporter's amide protons to water protons, can be switched on and off.  相似文献   
32.
Silberberg G  Markram H 《Neuron》2007,53(5):735-746
Reliable activation of inhibitory pathways is essential for maintaining the balance between excitation and inhibition during cortical activity. Little is known, however, about the activation of these pathways at the level of the local neocortical microcircuit. We report a disynaptic inhibitory pathway among neocortical pyramidal cells (PCs). Inhibitory responses were evoked in layer 5 PCs following stimulation of individual neighboring PCs with trains of action potentials. The probability for inhibition between PCs was more than twice that of direct excitation, and inhibitory responses increased as a function of rate and duration of presynaptic discharge. Simultaneous somatic and dendritic recordings indicated that inhibition originated from PC apical and tuft dendrites. Multineuron whole-cell recordings from PCs and interneurons combined with morphological reconstructions revealed the mediating interneurons as Martinotti cells. Martinotti cells received facilitating synapses from PCs and formed reliable inhibitory synapses onto dendrites of neighboring PCs. We describe this feedback pathway and propose it as a central mechanism for regulation of cortical activity.  相似文献   
33.
The composition of the cellulase system in the cellulosome-producing bacterium, Clostridium thermocellum, has been reported to change in response to growth on different carbon sources. Recently, an extensive carbohydrate-sensing mechanism, purported to regulate the activation of genes coding for polysaccharide-degrading enzymes, was suggested. In this system, CBM modules, comprising extracellular components of RsgI-like anti-σ factors, were proposed to function as carbohydrate sensors, through which a set of cellulose utilization genes are activated by the associated σI-like factors. An extracellular module of one of these RsgI-like proteins (Cthe_2119) was annotated as a family 10 glycoside hydrolase, RsgI6-GH10, and a second putative anti-σ factor (Cthe_1471), related in sequence to Rsi24, was found to contain a module that resembles a family 5 glycoside hydrolase (termed herein Rsi24C-GH5). The present study examines the relevance of these two glycoside hydrolases as sensors in this signal-transmission system. The RsgI6-GH10 was found to bind xylan matrices but exhibited low enzymatic activity on this substrate. In addition, this glycoside hydrolase module was shown to interact with crystalline cellulose although no hydrolytic activity was detected on cellulosic substrates. Bioinformatic analysis of the Rsi24C-GH5 showed a glutamate-to-glutamine substitution that would presumably preclude catalytic activity. Indeed, the recombinant module was shown to bind to cellulose, but showed no hydrolytic activity. These observations suggest that these two glycoside hydrolases underwent an evolutionary adaptation to function as polysaccharide binding agents rather than enzymatic components and thus serve in the capacity of extracellular carbohydrate sensors.  相似文献   
34.
Probiotics are live microorganisms that exert health-promoting effects on the human host, as demonstrated for numerous strains of the genus Bifidobacterium. To unravel the proteins involved in the interactions between the host and the extensively used and well-studied probiotic strain Bifidobacterium animalis subsp. lactis BB-12, proteins secreted by the bacterium, i.e. belonging to the extracellular proteome present in the culture medium, were identified by 2-DE coupled with MALDI-TOF MS. Among the 74 distinct proteins identified, 31 are predicted to carry out their physiological role either outside the cell or on its surface. These proteins include solute-binding proteins for oligosaccharides, amino acids and manganese, cell wall-metabolizing proteins, and 18 proteins that have been described to interact with human host epithelial cells or extracellular matrix proteins. The potential functions include binding of plasminogen, formation of fimbriae, adhesion to collagen, attachment to mucin and intestinal cells as well as induction of immunomodulative response. These findings suggest a role of the proteins in colonization of the gastrointestinal tract, adhesion to host tissues, or immunomodulation of the host immune system. The identification of proteins predicted to be involved in such interactions can pave the way towards well targeted studies of the protein-mediated contacts between bacteria and the host, with the goal to enhance the understanding of the mode of action of probiotic bacteria.  相似文献   
35.
The synaptic drive from neuronal populations varies considerably over short time scales. Such changes in the pre-synaptic rate trigger many temporal processes absent under steady-state conditions. This paper examines the differential impact of pyramidal cell population bursts on post-synaptic pyramidal cells receiving depressing synapses, and on a class of interneuron that receives facilitating synapses. In experiment a significant shift of the order of one hundred milliseconds is seen between the response of these two cell classes to the same population burst. It is demonstrated here that such a temporal differentiation of the response can be explained by the synaptic and membrane properties without recourse to elaborate cortical wiring schemes. Experimental data is first used to construct models of the two types of dynamic synaptic response. A population-based approach is then followed to examine analytically the temporal synaptic filtering effects of the population burst for the two post-synaptic targets. The peak-to-peak delays seen in experiment can be captured by the model for experimentally realistic parameter ranges. It is further shown that the temporal separation of the response is communicated in the outgoing action potentials of the two post-synaptic cells: pyramidal cells fire at the beginning of the burst and the class of interneuron receiving facilitating synapses fires at the end of the burst. The functional role of such delays in the temporal organisation of activity in the cortical microcircuit is discussed.  相似文献   
36.
Abscisic acid stress ripening (ASR1) is a highly charged low molecular weight plant specific protein that is regulated by salt- and water-stresses. The protein possesses a zinc-dependent DNA-binding activity (Kalifa et al., Biochem. J. 381 (2004) 373) and overexpression in transgenic plants results in an increased salt-tolerance (Kalifa et al., Plant Cell Environ. 27 (2004) 1459). There are no structure homologs of ASR1, thus the structural and functional domains of the protein cannot be predicted. Here, we map the protein domains involved in the binding of Zn(2+) and DNA. Using mild acid hydrolysis, and a series of ASR1 carboxy-terminal truncations we show that the zinc-dependent DNA-binding could be mapped to the central/carboxy-terminal domain. In addition, using MALDI-TOF-MS with a non-acidic matrix, we show that two zinc ions are bound to the amino-terminal domain. Other zinc ion(s) bind the DNA-binding domain. Binding of zinc to ASR1 induces conformational changes resulting in a decreased sensitivity to proteases.  相似文献   
37.
We carried out in vitro selection experiments to systematically probe the effects of TATA-box flanking sequences on its interaction with the TATA-box binding protein (TBP). This study validates our previous hypothesis that the effect of the flanking sequences on TBP/TATA-box interactions is much more significant when the TATA box has a context-dependent DNA structure. Several interesting observations, with implications for protein–DNA interactions in general, came out of this study. (i) Selected sequences are selection-method specific and TATA-box dependent. (ii) The variability in binding stability as a function of the flanking sequences for (T-A)4 boxes is as large as the variability in binding stability as a function of the core TATA box itself. Thus, for (T-A)4 boxes the flanking sequences completely dominate and determine the binding interaction. (iii) Binding stabilities of all but one of the individual selected sequences of the (T-A)4form is significantly higher than that of their mononucleotide-based consensus sequence. (iv) Even though the (T-A)4 sequence is symmetric the flanking sequence pattern is asymmetric. We propose that the plasticity of (T-A)n sequences increases the number of conformationally distinct TATA boxes without the need to extent the TBP contact region beyond the eight-base-pair long TATA box.  相似文献   
38.
The tumor-suppressor protein p53 is among the most effective of the cell's natural defenses against cancer. In response to cellular stress, p53 binds as a tetramer to diverse DNA targets containing two decameric half-sites, thereby activating the expression of genes involved in cell-cycle arrest or apoptosis. Here we present high-resolution crystal structures of sequence-specific complexes between the core domain of human p53 and different DNA half-sites. In all structures, four p53 molecules self-assemble on two DNA half-sites to form a tetramer that is a dimer of dimers, stabilized by protein-protein and base-stacking interactions. The protein-DNA interface varies as a function of the specific base sequence in correlation with the measured binding affinities of the complexes. The new data establish a structural framework for understanding the mechanisms of specificity, affinity, and cooperativity of DNA binding by p53 and suggest a model for its regulation by regions outside the sequence-specific DNA binding domain.  相似文献   
39.
The foreign insert intended to be displayed via recombinant phage proteins can have a negative effect on protein expression and phage assembly. A typical example is the case of display of peptides longer than 6 amino acid residues on the major coat protein, protein VIII of the filamentous bacteriophages M13 and fd. A solution to this problem has been the use of "two-gene systems" generating chimeric phages that concomitantly express wild-type protein VIII along with recombinant protein VIII. Although the two-gene systems are much more permissive in regard to insert length and composition, some cases can still adversely affect phage assembly. Although these phages genotypically contain the desired DNA of the insert, they appear to be phenotypically wild type. To avoid false-negative results when using chimeric phages in binding studies, it is necessary to confirm that the observed lack of phage recognition is not due to faulty assembly and display of the intended insert. Here we describe a strategy for generating antibodies that specifically recognize recombinant protein VIII regardless of the nature of its foreign insert. These antibodies can be used as a general monitor of the display of recombinant protein VIII into phage particles.  相似文献   
40.
Unfolded proteins under strongly denaturing conditions are highly expanded. However, when the conditions are more close to native, an unfolded protein may collapse to a compact globular structure distinct from the folded state. This transition is akin to the coil-globule transition of homopolymers. Single-molecule FRET experiments have been particularly conducive in revealing the collapsed state under conditions of coexistence with the folded state. The collapse can be even more readily observed in natively unfolded proteins. Time-resolved studies, using FRET and small-angle scattering, have shown that the collapse transition is a very fast event, probably occurring on the submicrosecond time scale. The forces driving collapse are likely to involve both hydrophobic and backbone interactions. The loss of configurational entropy during collapse makes the unfolded state less stable compared to the folded state, thus facilitating folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号