首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   4篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   5篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   9篇
  2007年   3篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1983年   2篇
  1981年   2篇
  1968年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
71.
Ether lipids     
The naturally occurring 1-O-alkyl-sn-glycerols and their methoxylated congeners, 1-O-(2′-methoxyalkyl)-sn-glycerols, are biologically active compounds, ubiquitously found in nature as diacyl glyceryl ether lipids and phosphoether lipids. The chief objective of this article is to provide a comprehensive and up to date review on such ether lipids. The occurrence and distribution of these compounds in nature are extensively reviewed, their chemical structure and molecular variety, their biosynthesis and chemical synthesis and, finally, their various biological effects are described and discussed. An unprecedented biosynthesis of the 2′-methoxylated alkylglycerols is proposed. The first synthesis of enantiopure (Z)-(2′R)-1-O-(2′-methoxyhexadec-4′-enyl)-sn-glycerol, the most prevalent 2′-methoxylated type alkylglycerol present in cartilaginous fish, is described. It was accomplished by a highly convergent five step process.  相似文献   
72.
Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its distinct collagen fibrils would display similar mechanical properties. Human patellar tendons (n = 5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon, and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young's modulus was 2.0 ± 0.5 GPa, and the toe region reached 3.3 ± 1.9% strain in whole patellar tendons. Based on dry cross-sectional area, the Young's modulus of isolated collagen fibrils was 2.8 ± 0.3 GPa, and the toe region reached 0.86 ± 0.08% strain. The measured fibril modulus was insufficient to account for the modulus of the tendon in vivo when fibril content in the tendon was accounted for. Thus, our original hypothesis was not supported, although the in vitro fibril modulus corresponded well with reported in vitro tendon values. This correspondence together with the fibril modulus not being greater than that of tendon supports that fibrillar rather than interfibrillar properties govern the subfailure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition to the primary work comparing the two hierarchical levels, we also verified the existence of viscoelastic behavior in isolated human collagen fibrils.  相似文献   
73.
The effect on enkephalin degradation of the four highly potent organophosphorus anticholinesterases, soman, sarin, tabun and DFP was studied in synaptosomal fractions of rat brain striata. None of the agents effected any of the enkephalin degrading enzymes, the puromycin sensitive aminopeptidase, the p-hydroxymercurybenzoate (p-HMB) sensitive dipeptidyl aminopeptidase or the phosphoramidon sensitive enkephalinase. Furthermore, no peptidase function of acetylcholinesterase was found, when Leu-enkephalin was used as substrate at low concentrations (27 nM). Supporting the in vitro data, no difference was obtained in the striatal levels of Met- and Leu-enkephalin between rats receiving a high single dose of soman and controls. The results show that the analgesic effect of anticholinesterases are more likely due to mechanisms other than inhibition of enkephalin degradation.  相似文献   
74.
Confusion of various nephrotoxic Cortinarius species with edible mushrooms occurs every year throughout Europe and North America. The toxin, orellanine (OR), accumulates selectively in renal tubular epithelium with ensuing renal failure after several days as the only clinical manifestation. This study was performed to clarify the mechanisms behind the kidney damage. Sprague-Dawley rats, 100 g bw, received various doses of purified OR ip (0-5 mg/kg bw). One week later, renal function (GFR) was determined (51Cr-EDTA), ascorbyl radicals in venous blood were analyzed using electron spin resonance, and oxidative protein damage was evaluated immunohistochemically. One OR-treated group (3.5 mg/kg) simultaneously received superoxide dismutase (SOD) targeted to tubular epithelium (HC-SOD; 10 mg/kg ip daily for 5 days). RT-PCR was used for analysis of mRNA expression of genes related to oxidative stress. OR caused a dose-dependent decrease in GFR, paralleled by increased levels of ascorbyl radicals and oxidative protein damage. Antioxidant treatment with HC-SOD decreased renal function even more and also increased tissue damage and mortality. Renal mRNA levels for key components in the antioxidative defense were strongly decreased, whereas those for several cytokines were increased. The data strongly suggest that OR nephrotoxicity in vivo is mediated by oxidative stress, including a virtual shutdown of important antioxidative enzymes. We interpret the unexpected effect of HC-SOD in terms of unbalanced SOD and catalase levels in the presence of OR, leading to massive generation of *OH and cell death.  相似文献   
75.

Background  

Modelling proteins with multiple domains is one of the central challenges in Structural Biology. Although homology modelling has successfully been applied for prediction of protein structures, very often domain-domain interactions cannot be inferred from the structures of homologues and their prediction requiresab initiomethods. Here we present a new structural prediction approach for modelling two-domain proteins based on rigid-body domain-domain docking.  相似文献   
76.
77.

Background

Although the pathophysiological defect in primary ciliary dyskinesia (PCD; Siewert's / Kartagener's syndrome) is now well characterised, there are few studies of the impact of the condition upon health function, particularly in later life. This study assesses the health impact of the condition in a large group of patients. In addition, it assesses the similarity in age of diagnosis, symptoms and problems of those with situs inversus (PCD-SI) and those with situs solitus (PCD-SS).

Methods

Postal questionnaire sent to members of the UK Primary Ciliary Dyskinesia Family Support Group. The questionnaire contained the St. George's Respiratory Questionnaire (SGRQ) and the SF-36 questionnaire for assessing health status.

Results

93 questionnaires were returned, representing a 66% response rate. Replies were received from similar numbers of PCD-SI and PCD-SS. Individuals with PCD-SI did not show a significant tendency to be diagnosed earlier, and neither did they show any difference in their symptoms, or the relationship of symptoms to age. Respiratory symptoms were fairly constant up until the age of about 25, after which there was a slow increase in symptoms, and a decline in health status, patients over the age of 40 being about one and a half standard deviations below the mean on the physical component score of the PCS. Patients diagnosed earlier in life, and hence who had received more treatment for their condition, had better scores on the SGRQ Impact and Activity scores.

Conclusions

PCD is a chronic condition which has a progressively greater impact on health in the second half of life, producing significant morbidity and restriction of life style. Early diagnosis, and hence earlier treatment, may improve symptoms and the impact of the condition.  相似文献   
78.
We studied by microphysiometry functional effects of two different signalling molecules in the murine tumor cell lines, MCG 101 and K1735-M2, namely norepinephrine (NE) and prostaglandin E2 (PGE2). This methodology implies estimation of intracellular metabolism by measurements of extracellular acidification rate (ECAR). MCG 101 (an undifferentiated, epithelial-like tumor), in contrast to K1735-M2 (a melanoma), has been found to produce great amounts of PGE2. Challenge of MCG 101 cells with PGE2 (0.284 and 2.84 microM for 9 min) elicited an increase in ECAR by about 10 and 41% above basal level, respectively. Pretreatment with indomethacin (0.5 microM) reduced the response to the two PGE2 concentrations by about 70 and 25%, respectively. In contrast, PGE2 caused virtually no response in K1735-M2 cells. Moreover, NE caused increases in ECAR in both cell types, possibly via beta3-adrenoceptors, as investigated pharmacologically in MCG 101, and by immunocytochemistry in both cell lines. The results obtained strongly suggest functional receptors for PGE2 in MCG 101, but not K1735-M2 tumor cells. Functional receptors for NE were demonstrated in both cell lines. There is possibly an autocrine loop in the MCG 101 cells, in which PGE2 activates cyclooxygenase.  相似文献   
79.
Although evidence indicates that environmental factors play a major role in precipitating systemic autoimmunity in genetically susceptible individuals, little is known about the mechanisms involved. Certain heavy metals, such as mercury, are potent environmental immunostimulants that produce a number of immunopathologic sequelae, including lymphoproliferation, hypergammaglobulinemia, and overt systemic autoimmunity. Predisposition to such metal-induced immunopathology has been shown to be influenced by both MHC and non-MHC genes, as well as susceptibility to spontaneous lupus, in mice and other experimental animals. Among the various mouse strains examined to date, the DBA/2 appears to uniquely lack susceptibility to mercury-induced autoimmunity (HgIA), despite expressing a susceptible H-2 haplotype (H-2d). To define the genetic basis for this trait, two genome-wide scans were conducted using F2 intercrosses of the DBA/2 strain with either the SJL or NZB strains, both of which are highly susceptible to HgIA. A single major quantitative trait locus on chromosome 1, designated Hmr1, was shown to be common to both crosses and encompassed a region containing several lupus susceptibility loci. Hmr1 was linked to glomerular immune complex deposits and not autoantibody production, suggesting that DBA/2 resistance to HgIA may primarily involve the later stages of disease pathogenesis. Identification and characterization of susceptibility/resistance genes and mechanisms relevant to the immunopathogenesis of mercury-induced autoimmunity should provide important insights into the pathogenesis of autoimmunity and may reveal novel targets for intervention.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号