首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3418篇
  免费   311篇
  国内免费   5篇
  3734篇
  2023年   18篇
  2022年   32篇
  2021年   52篇
  2020年   51篇
  2019年   37篇
  2018年   58篇
  2017年   55篇
  2016年   85篇
  2015年   139篇
  2014年   146篇
  2013年   178篇
  2012年   235篇
  2011年   248篇
  2010年   152篇
  2009年   156篇
  2008年   223篇
  2007年   224篇
  2006年   190篇
  2005年   202篇
  2004年   189篇
  2003年   171篇
  2002年   177篇
  2001年   22篇
  2000年   38篇
  1999年   37篇
  1998年   39篇
  1997年   39篇
  1996年   39篇
  1995年   24篇
  1994年   31篇
  1993年   26篇
  1992年   16篇
  1991年   20篇
  1990年   25篇
  1989年   18篇
  1987年   16篇
  1985年   15篇
  1984年   10篇
  1983年   13篇
  1982年   23篇
  1981年   23篇
  1980年   23篇
  1979年   19篇
  1978年   12篇
  1977年   12篇
  1975年   16篇
  1972年   10篇
  1968年   12篇
  1967年   12篇
  1964年   12篇
排序方式: 共有3734条查询结果,搜索用时 15 毫秒
11.
12.
13.
FMRFamide (Phe-Met-Arg-Phe-amide, FMRFa) and similar neuropeptides are important physiological modulators in most invertebrates, but the molecular basis of FMRFa activity at its receptors is unknown. We therefore sought to identify the molecular determinants of FMRFa potency against one of its native targets, the excitatory FMRFa-gated sodium channel (FaNaC) from gastropod mollusks. Using molecular phylogenetics and electrophysiological measurement of neuropeptide activity, we identified a broad FaNaC family that includes mollusk and annelid channels gated by FMRFa, FVRIamides, and/or Wamides (or myoinhibitory peptides). A comparative analysis of this broader FaNaC family and other channels from the overarching degenerin (DEG)/epithelial sodium channel (ENaC) superfamily, incorporating mutagenesis and experimental dissection of channel function, identified a pocket of amino acid residues that determines activation of FaNaCs by neuropeptides. Although this pocket has diverged in distantly related DEG/ENaC channels that are activated by other ligands but enhanced by FMRFa, such as mammalian acid-sensing ion channels, we show that it nonetheless contains residues that determine enhancement of those channels by similar peptides. This study thus identifies amino acid residues that determine FMRFa neuropeptide activity at FaNaC receptor channels and illuminates the evolution of ligand recognition in one branch of the DEG/ENaC superfamily of ion channels.  相似文献   
14.
15.
Genetic polymorphisms of pvdhfr and pvdhps genes of Plasmodium vivax were investigated in 83 blood samples collected from patients in the Philippines, Bangladesh, and Nepal. The SNP-haplotypes of the pvdhfr gene at the amino acid positions 13, 33, 57, 58, 61, 117, and 173, and that of the pvdhps gene at the positions 383 and 553 were analyzed by nested PCR-RFLP. Results suggest diverse polymorphic patterns of pvdhfr alone as well as the combination patterns with pvdhps mutant alleles in P. vivax isolates collected from the 3 endemic countries in Asia. All samples carried mutant combination alleles of pvdhfr and pvdhps. The most prevalent combination alleles found in samples from the Philippines and Bangladesh were triple mutant pvdhfr combined with single mutant pvdhps allele and triple mutant pvdhfr combined with double wild-type pvdhps alleles, respectively. Those collected from Nepal were quadruple mutant pvdhfr combined with double wild-type pvdhps alleles. New alternative antifolate drugs which are effective against sulfadoxine-pyrimethamine (SP)-resistant P. vivax are required.  相似文献   
16.
The Sec24 subunit of the coat protein complex II (COPII) has been implicated in selecting newly synthesized cargo from the endoplasmic reticulum (ER) for delivery to the Golgi. The protozoan parasite, Trypanosoma brucei, contains two paralogs, TbSec24.1 and TbSec24.2, which were depleted using RNA interference in the insect form of the parasite. Depletion of either TbSec24.1 or TbSec24.2 resulted in growth arrest and modest inhibition of anterograde transport of the putative Golgi enzyme, TbGntB, and the secretory marker, BiPNAVRG-HA9. In contrast, depletion of TbSec24.1, but not TbSec24.2, led to reversible mislocalization of the Golgi stack proteins, TbGRASP and TbGolgin63. The latter accumulated in the ER. The localization of the COPI coatomer subunit, TbεCOP, and the trans Golgi network (TGN) protein, TbGRIP70, was largely unaffected, although the latter was preferentially lost from those Golgi that were not associated with the bilobe, a structure previously implicated in Golgi biogenesis. Together, these data suggest that TbSec24 paralogs can differentiate among proteins destined for the Golgi.  相似文献   
17.
18.
Peptides, such as many hormones, cytokines and growth factors play a central role in biological processes. Furthermore, as degradation products and processed forms of larger proteins they are part of the protein turnover. Thus, they can reflect disease-related changes in an organism's homeostasis in several ways. Since two-dimensional gel electrophoresis is restricted to analysis and display of proteins with relative molecular masses above 5000, we developed Differential Peptide Display (DPD), a new technology for analysis and visualization of peptides. Here we describe its application to cerebrospinal fluid of three subjects without a disease of the central nervous system (CNS) undergoing routine myelography and of two patients suffering from a primary CNS lymphoma. Peptides with a relative molecular mass below 20000 were extracted and analysed by a combination of chromatography and mass spectrometry. The peptide pattern of a sample was depicted as a multi-dimensional peptide mass fingerprint with each peptide's position being characterized by its molecular mass and chromatographic behaviour. Such a fingerprint of a CNS sample consists of more than 6000 different signals. Data analysis of peptide patterns from patients with CNS lymphoma compared to controls revealed obvious differences regarding the peptide content of the samples. By analysing peptides within a mass range of 750-20000, DPD extends 2D gel electrophoresis, thus offering the chance to investigate CNS diseases on the level of peptides. This represents a new approach for diagnosis and possible therapy.  相似文献   
19.
Most nerve cells communicate with each other through synaptic transmission at chemical synapses. The regulated exocytosis of neurotransmitters, hormones, and peptides occurs at specialized membrane areas through Ca2+-triggered fusion of secretory vesicles with the plasma membrane . Prior to fusion, vesicles are docked at the plasma membrane and must then be rendered fusion-competent through a process called priming. The molecular mechanism underlying this priming process is most likely the formation of the SNARE complex consisting of Syntaxin 1, SNAP-25, and Synaptobrevin 2. Members of the Munc13 protein family consisting of Munc13-1, -2, -3, and -4 were found to be absolutely required for this priming process . In the present study, we identified the minimal Munc13-1 domain that is responsible for its priming activity. Using Munc13-1 deletion constructs in an electrophysiological gain-of-function assay of chromaffin-granule secretion, we show that priming activity is mediated by the C-terminal residues 1100-1735 of Munc13-1, which contains both Munc13-homology domains and the C-terminal C2 domain. Priming by Munc13-1 appears to require its interaction with Syntaxin 1 because point mutants that do not bind Syntaxin 1 do not prime chromaffin granules.  相似文献   
20.
Individual mouse strains differ significantly in terms of behavior and cognitive function. Strain-specific variation of metabolic protein levels in the hippocampus among various commonly used mouse strains, however, has not been investigated yet. A proteomic approach based on two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry [high capacity ion trap (HCT)] has been chosen to address this question by determining strain-dependent levels of metabolic proteins in hippocampal tissue of four inbred and one outbred mouse strain. Statistical analysis of protein spots on 2-DE gels of the individual strains (n = 10) revealed significant strain-dependent differences in densities of 39 spots. Subsequent HCT analysis led to the identification of 22 different metabolic proteins presenting with differential protein levels among the five mouse strains investigated. Among those are proteins concerned with the metabolism of amino acid, nucleic acid, carbohydrate and energy. Moreover, proteins known to play a pivotal role in the processes of learning and memory, such as calcium/calmodulin-dependent protein kinase type II alpha chain, were found to present with significant inter-strain variability, which is also in agreement with our previous reports. Strain-specific protein levels of metabolic proteins in the mouse hippocampus may provide some insight into the molecular underpinnings and genetic determination of strain-dependent neuronal function. Furthermore, data presented herein emphasize the significance of the genetic background for the analysis of metabolic pathways in the hippocampus in wild-type mice as well as in gene-targeting experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号