首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7280篇
  免费   586篇
  国内免费   29篇
  7895篇
  2022年   67篇
  2021年   92篇
  2020年   79篇
  2019年   59篇
  2018年   132篇
  2017年   120篇
  2016年   181篇
  2015年   298篇
  2014年   330篇
  2013年   399篇
  2012年   520篇
  2011年   507篇
  2010年   350篇
  2009年   277篇
  2008年   420篇
  2007年   365篇
  2006年   332篇
  2005年   330篇
  2004年   330篇
  2003年   296篇
  2002年   313篇
  2001年   145篇
  2000年   146篇
  1999年   116篇
  1998年   64篇
  1997年   60篇
  1996年   74篇
  1995年   46篇
  1994年   47篇
  1993年   48篇
  1992年   74篇
  1991年   89篇
  1990年   75篇
  1989年   56篇
  1988年   44篇
  1987年   49篇
  1986年   58篇
  1985年   40篇
  1984年   36篇
  1982年   37篇
  1981年   47篇
  1980年   35篇
  1979年   45篇
  1978年   35篇
  1977年   36篇
  1975年   45篇
  1973年   35篇
  1972年   33篇
  1971年   42篇
  1968年   34篇
排序方式: 共有7895条查询结果,搜索用时 12 毫秒
991.
In multiple sclerosis, a common inflammatory disease of the central nervous system, immune-mediated axon damage is responsible for permanent neurological deficits. How axon damage is initiated is not known. Here we use in vivo imaging to identify a previously undescribed variant of axon damage in a mouse model of multiple sclerosis. This process, termed 'focal axonal degeneration' (FAD), is characterized by sequential stages, beginning with focal swellings and progressing to axon fragmentation. Notably, most swollen axons persist unchanged for several days, and some recover spontaneously. Early stages of FAD can be observed in axons with intact myelin sheaths. Thus, contrary to the classical view, demyelination-a hallmark of multiple sclerosis-is not a prerequisite for axon damage. Instead, focal intra-axonal mitochondrial pathology is the earliest ultrastructural sign of damage, and it precedes changes in axon morphology. Molecular imaging and pharmacological experiments show that macrophage-derived reactive oxygen and nitrogen species (ROS and RNS) can trigger mitochondrial pathology and initiate FAD. Indeed, neutralization of ROS and RNS rescues axons that have already entered the degenerative process. Finally, axonal changes consistent with FAD can be detected in acute human multiple sclerosis lesions. In summary, our data suggest that inflammatory axon damage might be spontaneously reversible and thus a potential target for therapy.  相似文献   
992.
Crk-associated substrate (CAS) is a major tyrosine-phosphorylated protein in cells transformed by v-crk and v-src oncogenes and plays an important role in invasiveness of Src-transformed cells. A novel phosphorylation site on CAS, Tyr-12 (Y12) within the ligand-binding hydrophobic pocket of the CAS SH3 domain, was identified and found to be enriched in Src-transformed cells and invasive human carcinoma cells. To study the biological significance of CAS Y12 phosphorylation, phosphomimicking Y12E and nonphosphorylatable Y12F mutants of CAS were studied. The phosphomimicking mutation decreased interaction of the CAS SH3 domain with focal adhesion kinase (FAK) and PTP-PEST and reduced tyrosine phosphorylation of FAK. Live-cell imaging showed that green fluorescent protein-tagged CAS Y12E mutant is, in contrast to wild-type or Y12F CAS, excluded from focal adhesions but retains its localization to podosome-type adhesions. Expression of CAS-Y12F in cas-/- mouse embryonic fibroblasts resulted in hyperphosphorylation of the CAS substrate domain, and this was associated with slower turnover of focal adhesions and decreased cell migration. Moreover, expression of CAS Y12F in Src-transformed cells greatly decreased invasiveness when compared to wild-type CAS expression. These findings reveal an important role of CAS Y12 phosphorylation in the regulation of focal adhesion assembly, cell migration, and invasiveness of Src-transformed cells.  相似文献   
993.
Theory predicts that habitat fragmentation, including reduced area and connectivity of suitable habitat, changes multitrophic interactions. Species at the bottom of trophic cascades (host plants) are expected to be less negatively affected than higher trophic levels, such as herbivores and their parasitoids or predators. Here we test this hypothesis regarding the effects of habitat area and connectivity in a trophic system with three levels: first with the population size of the larval food plant Hippocrepis comosa, next with the population density of the monophagous butterfly species Polyommatus coridon and finally with its larval parasitism rate. Our results show no evidence for negative effects of habitat fragmentation on the food plant or on parasitism rates, but population density of adult P. coridon was reduced with decreasing connectivity. We conclude that the highly specialized butterfly species is more affected by habitat fragmentation than its larval food plant because of its higher trophic position. However, the butterfly host species was also more affected than its parasitoids, presumably because of lower resource specialization of local parasitoids which also frequently occur in alternative hosts. Therefore, conservation efforts should focus first on the most specialized species of interaction networks and second on higher trophic levels.  相似文献   
994.
The efficient coupling between lattice degrees of freedom and spin degrees of freedom in magnetic materials can be used for refrigeration and energy conversion. This coupling is enhanced in materials exhibiting the giant magnetocaloric effect. First principle electronic structure calculations on hexagonal MnFe(P, Si) reveal a new form of magnetism: the coexistence of strong and weak magnetism in alternate atomic layers. The weak magnetism of Fe layers (disappearance of local magnetic moments at the Curie temperature) is responsible for a strong coupling with the crystal lattice while the strong magnetism in adjacent Mn‐layers ensures Curie temperatures high enough to enable operation at and above room temperature. Varying the composition on these magnetic sublattices gives a handle to tune the working temperature and to achieve a strong reduction of the undesired thermal hysteresis. In this way we design novel materials based on abundantly available elements with properties matched to the requirements of an efficient refrigeration or energy‐conversion cycle.  相似文献   
995.
Bröker BM  van Belkum A 《Proteomics》2011,11(15):3221-3231
Immune proteomics is an increasingly powerful tool for the investigation of the adaptive immune response to natural encounters between micro-organisms and their hosts. The versatile species Staphylococcus aureus serves to illustrate how these techniques can be employed to appreciate the complexity and diversity of the host-pathogen interactions in unprecedented detail and completeness. Such knowledge is important for the development of effective vaccines as well as informative diagnostic and novel therapeutic tools. From high-resolution immune proteome studies, general rules underlying the human adaptive immune response to S. aureus colonization and infection are beginning to emerge against a background of extreme diversity: S. aureus carriers develop immune memory for their colonizing strain, but even non-carriers are frequently exposed to S. aureus, resulting in specific antibodies. During bacterial invasion, immune-competent individuals rapidly mount an antibody response to a large panel of S. aureus antigens. However, every patient starts from a personal baseline antibody profile reflecting his or her history of encounters with S. aureus.  相似文献   
996.
997.
Abnormal phosphorylation and aggregation of tau protein are hallmarks of a variety of neurological disorders, including Alzheimer's disease (AD). Increased tau phosphorylation is assumed to represent an early event in pathogenesis and a pivotal aspect for aggregation and formation of neurofibrillary tangles. However, the regulation of tau phosphorylation in vivo and the causes for its increased stage of phosphorylation in AD are still not well understood, a fact that is primarily based on the lack of adequate animal models. Recently we described the reversible formation of highly phosphorylated tau protein in hibernating European ground squirrels. Hence, mammalian hibernation represents a model system very well suited to study molecular mechanisms of both tau phosphorylation and dephosphorylation under in vivo physiological conditions. Here, we analysed the extent and kinetics of hibernation-state dependent tau phosphorylation in various brain regions of three species of hibernating mammals: arctic ground squirrels, Syrian hamsters and black bears. Overall, tau protein was highly phosphorylated in torpor states and phosphorylation levels decreased after arousal in all species. Differences between brain regions, hibernation-states and phosphosites were observed with respect to degree and kinetics of tau phosphorylation. Furthermore, we tested the phosphate net turnover of tau protein to analyse potential alterations in kinase and/or phosphatase activities during hibernation. Our results demonstrate that the hibernation-state dependent phosphorylation of tau protein is specifically regulated but involves, in addition, passive, temperature driven regulatory mechanisms. By determining the activity-state profile for key enzymes of tau phosphorylation we could identify kinases potentially involved in the differentially regulated, reversible tau phosphorylation that occurs during hibernation. We show that in black bears hibernation is associated with conformational changes of highly phosphorylated tau protein that are typically related to neuropathological alterations. The particular hibernation characteristics of black bears with a continuous torpor period and an only slightly decreased body temperature, therefore, potentially reflects the limitations of this adaptive reaction pattern and, thus, might indicate a transitional state of a physiological process.  相似文献   
998.
Myotonia is a symptom of various genetic and acquired skeletal muscular disorders and is characterized by hyperexcitability of the sarcolemma. Here, we have performed a comparative proteomic study of the genetic mouse models ADR, MTO and MTO*5J of human congenital myotonia in order to determine myotonia-specific changes in the global protein complement of gastrocnemius muscle. Proteomic analyses of myotonia in the mouse, which is caused by mutations in the gene encoding the muscular chloride channel Clc1, revealed a generally perturbed protein expression pattern in severely affected ADR and MTO muscle, but less pronounced alterations in mildly diseased MTO*5J mice. Alterations were found in major metabolic pathways, the contractile machinery, ion handling elements, the cellular stress response and cell signaling mechanisms, clearly confirming a glycolytic-to-oxidative transformation process in myotonic fast muscle. In the long-term, a detailed biomarker signature of myotonia will improve our understanding of the pathobiochemical processes underlying this disorder and be helpful in determining how a single mutation in a tissue-specific gene can trigger severe downstream effects on the expression levels of a very large number of genes in contractile tissues.  相似文献   
999.
Polymeric nanowires of polypyrrole have been implemented as artificial cilia on giant-magneto-resistive multilayer sensors for a biomimetic sensing approach. The arrays were tagged with a magnetic material, the stray field of which changes relative to the underlying sensor as a consequence of mechanical stimuli which are delivered by a piezoactuator. The principle resembles balance sensing in mammals. Measurements of the sensor output voltage suggest a proof of concept at frequencies of around 190 kHz and a tag thickness of ~300 nm. Characterization was performed by scanning electron microscopy and magnetic force microscopy. Micromagnetic and finite-element simulations were conducted to assess basic sensing aspects.  相似文献   
1000.

Background

We consider the following problem: Given an undirected network and a set of sender-receiver pairs, direct all edges such that the maximum number of "signal flows" defined by the pairs can be routed respecting edge directions. This problem has applications in understanding protein interaction based cell regulation mechanisms. Since this problem is NP-hard, research so far concentrated on polynomial-time approximation algorithms and tractable special cases.

Results

We take the viewpoint of parameterized algorithmics and examine several parameters related to the maximum signal flow over vertices or edges. We provide several fixed-parameter tractability results, and in one case a sharp complexity dichotomy between a linear-time solvable case and a slightly more general NP-hard case. We examine the value of these parameters for several real-world network instances.

Conclusions

Several biologically relevant special cases of the NP-hard problem can be solved to optimality. In this way, parameterized analysis yields both deeper insight into the computational complexity and practical solving strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号