首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   28篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   14篇
  2013年   29篇
  2012年   18篇
  2011年   17篇
  2010年   16篇
  2009年   11篇
  2008年   15篇
  2007年   20篇
  2006年   19篇
  2005年   16篇
  2004年   16篇
  2003年   20篇
  2002年   13篇
  2001年   9篇
  2000年   7篇
  1999年   10篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1993年   2篇
  1992年   7篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1983年   5篇
  1982年   2篇
  1979年   2篇
  1974年   1篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
  1965年   1篇
排序方式: 共有357条查询结果,搜索用时 281 毫秒
121.
Mutation in the transmembrane protein 65 gene (TMEM65) results in mitochondrial dysfunction and a severe mitochondrial encephalomyopathy phenotype. However, neither the function of TMEM65 nor the cellular responses to its depletion have been fully elucidated. Hence, we knocked down TMEM65 in human cultured cells and analyzed the resulting cellular responses. Depletion of TMEM65 led to a mild increase in ROS generation and upregulation of the mRNA levels of oxidative stress suppressors, such as NFE2L2 and SESN3, indicating that TMEM65 knockdown induced an oxidative stress response. A mild induction of apoptosis was also observed upon depletion of TMEM65. Depletion of TMEM65 upregulated protein levels of the mitochondrial chaperone HSPD1 and mitochondrial protease LONP1, indicating that mitochondrial unfolded protein response (UPRmt) was induced in response to TMEM65 depletion. Additionally, we found that the mitochondrial protein import receptor TOMM22 and HSPA9 (mitochondrial Hsp70), were also upregulated in TMEM65-depleted cells. Notably, the depletion of TMEM65 did not lead to upregulation of TOMM22 in an ATF5-dependent manner, although upregulation of LONP1 reportedly occurs in an ATF5-dependent manner. Taken together, our findings suggest that depletion of TMEM65 causes mild oxidative stress and apoptosis, induces UPRmt, and upregulates protein expression of mitochondrial protein import receptor TOMM22 in an ATF5-independent manner.  相似文献   
122.
Antibodies to Encephalitozoon cuniculi were examined by enzyme-linked immunosorbent assay using E. cuniculi PTP2 recombinant protein and by Western blot analysis on a total of 472 dog serum samples that had been collected in Japan. Of these samples, 21.8% (103/472) had antibodies against E. cuniculi. Each of 5 serum samples that showed high (>1.0) or low (<0.1) OD value was selected randomly and further examined by Western blot using E. cuniculi-native antigens. All samples with high OD values reacted with specific E. cuniculi proteins, including an antigen of approximately 35 kDa corresponding with PTP2; sera with low OD values did not recognize this E. cuniculi band. This study is the first to demonstrate the prevalence of E. cuniculi infection in dogs in Japan.  相似文献   
123.
Many temporarily functioning proteins are generated during the replacement of nucleoproteins in the nuclei of late spermatids and seem to be degraded in the nucleus. This study was designed to clarify the involvement of the ubiquitin-proteasome degradation system in the nucleus of rat developing spermatids. Thus, we studied the nuclear distribution of polyubiquitinated proteins (pUP) and proteasome in spermiogenic cells and sperm using postembedding immunoelectron microscopy. We divided the nuclear area of late spermatids into two regions: (1) a dense area composed of condensed chromatin and (2) a nuclear pocket in the neck region. The latter was located in the caudal nuclear region and was surrounded by redundant nuclear envelope. We demonstrated the presence of pUP in the dense area and nuclear pocket, proteasome in the nuclear pocket, and clear spots in the dense area of rat spermatids. Using quantitative analysis of immunogold labeling, we found that fluctuation of pUP and proteasome levels in late spermatogenesis was mostly synchronized with disappearance of histones and transitional proteins reported previously. In the nuclei of human sperm, pUP was detected in the dense area, whereas proteasome was in the nuclear vacuoles and clear spots. These results strongly suggest that pUP occur in the dense nuclear area of developing spermatids and that the ubiquitin-proteasome system is more actively operational in the nuclear pocket than dense area. Thus, the nuclear pocket might be the degradation site for temporarily functioning proteins generating during condensation of chromatin in late spermatids.  相似文献   
124.
Wire injury of an artery has been recognized as a standard model of vascular inflammation and atherosclerosis; however, the mechanism of leukocyte recruitment has not been studied in this model. In this study, we documented the recruitment of leukocytes to the murine femoral artery after a wire injury. A transluminal mechanical injury was generated by insertion of a wire into the femoral artery of male C57BL/6J mice. The mice were anesthetized and ventilated after tracheotomy and protected from hypothermia by a warming lamp. Body temperature and blood pH did not significantly change during the experiment. The interaction between rhodamine 6G-labeled leukocytes and the injured femoral artery was monitored using an epifluorescent microscope, and the images were evaluated using a computer-assisted image analysis program. In the absence of injury, virtually no leukocyte adhesion was observed. In contrast, the number of adherent leukocytes increased 4 and 24 h after injury and declined 72 h after injury. The rolling flux of leukocytes increased 4 h after injury and remained high up to 7 days, but it was faster 72 h after injury. We identified another peak of leukocyte adhesion 7 days after injury. Injection of anti-P-selectin antibody significantly reduced leukocyte adhesion at the early and later phases. In conclusion, we have established a novel experimental system for direct observation of leukocyte recruitment to the injured femoral artery. Our system revealed a previously undetected, unique profile of leukocyte recruitment during vascular injury.  相似文献   
125.
Several studies have demonstrated that NF-kappaB is substantially involved in the progression of cardiac remodeling; however, it remains uncertain whether the continuous inhibition of NF-kappaB is effective for the prevention of myocardial remodeling. Myocardial infarction (MI) was produced by ligation of the left anterior coronary artery of rats. IMD-0354 (10 mg/kg per day), a novel phosphorylation inhibitor of IkappaB that acts via inhibition of IKK-beta, was injected intraperitoneally starting 24 h after induction of MI for 28 days. After 28 days, the IMD-0354-treated group showed significantly improved survival rate compared with that of the vehicle-treated group (P < 0.05). Although infarct size was similar in both groups, improved left ventricular (LV) remodeling and diastolic dysfunction, as indicated by smaller LV cavity (LV end-diastolic area: vehicle, 74.13 +/- 3.57 mm(2); IMD-0354, 55.00 +/- 3.73 mm(2); P < 0.05), smaller peak velocity of early-to-late filling wave (E/A) ratio (vehicle, 3.87 +/- 0.26; IMD-0354, 2.61 +/- 0.24; P < 0.05), and lower plasma brain natriuretic peptide level (vehicle, 167.63 +/- 14.87 pg/ml; IMD-0354, 110.75 +/- 6.41 pg/ml; P < 0.05), were observed in the IMD-0354-treated group. Moreover, fibrosis, accumulation of macrophages, and expression of several factors (transforming growth factor-beta1, monocyte chemoattractant protein-1, matrix metalloproteinase-9 and -2) in the noninfarcted myocardium was remarkably inhibited by IMD-0354. In conclusion, inhibition of NF-kappaB activation may reduce the proinflammatory reactions and modulate the extracellular matrix and provide an effective approach to prevent adverse cardiac remodeling after MI.  相似文献   
126.
Three subtypes of HP1, a conserved non-histone chromosomal protein enriched in heterochromatin, have been identified in humans, HP1alpha, beta and gamma. In the present study, we utilized a Drosophila system to characterize human HP1 functions. Over-expression of HP1beta in eye imaginal discs caused abnormally patterned eyes, with reduced numbers of ommatidia, and over-expression of HP1gamma in wing imaginal discs caused abnormal wings, in which L4 veins were gapped. These phenotypes were specific to the HP1 subtypes and appear to reflect suppressed gene expression. To determine the molecular domains of HP1 required for each specific phenotype, we constructed a series of chimeric molecules with HP1beta and HP1gamma. Our data show that the C-terminal chromo shadow domain (CSD) of HP1gamma is necessary for HP1gamma-type phenotype, whereas for the HP1beta-type phenotype both the chromo domain and the CSD are required. These results suggest human HP1 subtypes use different domains to suppress gene expression in Drosophila cells.  相似文献   
127.
Imbalances of gene expression in aneuploids, which contain an abnormal number of chromosomes, cause a variety of growth and developmental defects. Aneuploid cells of the fission yeast Schizosaccharomyces pombe are inviable, or very unstable, during mitotic growth. However, S. pombe haploid cells bearing minichromosomes derived from the chromosome 3 can grow stably as a partial aneuploid. To address biological consequences of aneuploidy, we examined the gene expression profiles of partial aneuploid strains using DNA microarray analysis. The expression of genes in disomic or trisomic cells was found to increase approximately in proportion to their copy number. We also found that some genes in the monosomic regions of partial aneuploid strains increased their expression level despite there being no change in copy number. This change in gene expression can be attributed to increased expression of the genes in the disomic or trisomic regions. However, even in an aneuploid strain that bears a minichromosome containing no protein coding genes, genes located within about 50 kb of the telomere showed similar increases in expression, indicating that these changes are not a secondary effect of the increased gene dosage. Examining the distribution of the heterochromoatin protein Swi6 using DNA microarray analysis, we found that binding of Swi6 within ~50 kb from the telomere occurred less in partial aneuploid strains compared to euploid strains. These results suggest that additional chromosomes in aneuploids could lead to imbalances in gene expression through changes in distribution of heterochromatin as well as in gene dosage.  相似文献   
128.
Since the accumulation of Nε-(carboxymethyl)lysine (CML), a major antigenic advanced glycation end product, is implicated in tissue disorders in hyperglycemia and inflammation, the identification of the pathway of CML formation will provide important information regarding the development of potential therapeutic strategies for these complications. The present study was designed to measure the effect of hypochlorous acid (HOCl) on CML formation from Amadori products. The incubation of glycated human serum albumin (glycated-HSA), a model of Amadori products, with HOCl led to CML formation, and an increasing HOCl concentration and decreasing pH, which mimics the formation of these products in inflammatory lesions. CML formation was also observed when glycated-HSA was incubated with activated neutrophils, and was completely inhibited in the presence of an HOCl scavenger. These data demonstrated that HOCl-mediated CML formation from Amadori products plays a role in CML formation and tissue damage at sites of inflammation.  相似文献   
129.
Clock genes that comprise the circadian clock system control various physiological functions. Delayed sleep-wake phase disorder (DSWPD) and night eating syndrome (NES) are characterized by delayed sleep and meal timing, respectively. We estimated that clock gene expression rhythms in DSWPD patients may be delayed in comparison with the healthy subjects due to delayed melatonin secretion rhythms, producing eveningness chronotype in these individuals. However, it was difficult to estimate which clock gene expression rhythms were delayed or not in NES patients, because previous studies revealed that melatonin secretion rhythm was a little delayed compared with healthy individuals and that chronotype of NES patients depended on the individuals. Therefore, we examined expression rhythms of clock genes such as Period3 (Per3), nuclear receptor subfamily 1, group D, member 1 (Nr1d1) and Nr1d2 in these patients. Further, we expected sleep and meal patterns in DSWPD and NES patients may be more diverse than patterns observed in healthy subjects, and thus analyzed relationships among clock gene expression rhythms, sleep quality, sleep midpoint time, and meal times. We enrolled healthy male participants along with DSWPD and NES male patients, and asked all participants to answer questionnaires and to keep diaries to record information on their sleep and meals. Further, we asked them to collect 5–10 beard follicle samples, 6 times every 4 h. We measured clock gene expression rhythms using total RNA extracted from beard follicle cells. Peak time of clock gene expression in the NES group showed more diversity than the other groups, and that in the DSWPD group was delayed compared with the control group. In addition, the peak time of clock gene expression was negatively correlated with sleep quality and positively correlated with meal time after a long fast. Amplitudes of clock gene expression, especially Per3, positively responded to better mental and physical conditions as well as with better sleep quality. Results of this study suggest that peak times of clock gene expression in NES patients depended on the individuals; some patients with NES showed similar clock gene expression rhythm to healthy subjects, and other patients with NES showed similar to DSWPD patients. Moreover, this study suggests that meal time after a long fast may influence more determination in clock gene expression rhythms than the time of breakfast. Therefore, this study also indicates that Per3 clock gene may be one of the parameters that will help us understand sleep and meal rhythm disturbances.  相似文献   
130.
A three-dimensional tissue was fabricated by layering cell sheets with centrifugation. In this system, an optimal centrifugal force promoted the adhesion between (a) a cell sheet and a culture dish, and (b) layered cell sheets, resulting in a significant decrease in the fabrication time of the tissue. However, negative effects like sliding/significant deformation of cell sheets were observed upon high rotational speed use. These negative effects inhibit the further shortening of the fabrication time. The sliding/deformation suggests that the centrifugal forces were applied on the cell sheets in unwanted directions. Studies on the force vector field applied to the object placed on the plate during centrifugation are not available, and thus, the reason for the occurrence of such negative effects is unclear. Here, we theoretically derived the spatial distribution of acceleration applied on a plate during centrifugation. Using this theory, we found that the negative effects were triggered by the centrifugal force in the direction parallel to the plate surface, which appeared due to an inclination of the plate surface against a horizontal plane. Therefore, by adding weights on the plate edge to maintain the plate surface in a horizontal position, we succeeded in eliminating the negative effects and in increasing the rotational speed, with the minimum risk of sliding/deformation of cell sheets. We succeeded in reducing the time to establish tight adhesion between a mouse myoblast sheet and a culture dish, and layered cell sheets by increasing the centrifugal force from 5 min to 1 min without significant cytotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号