首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2941篇
  免费   177篇
  2022年   11篇
  2021年   31篇
  2020年   19篇
  2019年   29篇
  2018年   28篇
  2017年   33篇
  2016年   40篇
  2015年   88篇
  2014年   109篇
  2013年   167篇
  2012年   153篇
  2011年   167篇
  2010年   88篇
  2009年   97篇
  2008年   143篇
  2007年   136篇
  2006年   136篇
  2005年   142篇
  2004年   125篇
  2003年   134篇
  2002年   114篇
  2001年   97篇
  2000年   112篇
  1999年   77篇
  1998年   36篇
  1997年   25篇
  1996年   26篇
  1995年   32篇
  1994年   26篇
  1993年   23篇
  1992年   72篇
  1991年   63篇
  1990年   47篇
  1989年   51篇
  1988年   46篇
  1987年   44篇
  1986年   38篇
  1985年   33篇
  1984年   25篇
  1983年   35篇
  1982年   28篇
  1981年   19篇
  1980年   16篇
  1979年   21篇
  1978年   10篇
  1976年   19篇
  1975年   13篇
  1973年   14篇
  1970年   9篇
  1969年   11篇
排序方式: 共有3118条查询结果,搜索用时 125 毫秒
171.
The majority of chlorophyllous orchids form mycorrhizal associations with so‐called rhizoctonia fungi, a phylogenetically heterogeneous assemblage of predominantly saprotrophic fungi in Ceratobasidiaceae, Tulasnellaceae, and Serendipitaceae. It is still a matter of debate whether adult orchids mainly associated with rhizoctonia species are partially mycoheterotrophic. Here, we investigated the nutritional modes of green and albino variants of Goodyera velutina, an orchid species considered to be mainly associated with Ceratobasidium spp., by measuring their 13C and 15N abundances, and by molecular barcoding of their mycorrhizal fungi. Molecular analysis revealed that both green and albino variants of G. velutina harbored a similar range of mycobionts, mainly saprotrophic Ceratobasidium spp., Tulasnella spp., and ectomycorrhizal Russula spp. In addition, stable isotope analysis revealed that albino variants were significantly enriched in 13C but not so greatly in 15N, suggesting that saprotrophic Ceratobasidium spp. and Tulasnella spp. are their main carbon source. However, in green variants, 13C levels were depleted and those of 15N were indistinguishable from the co‐occurring autotrophic plants. Therefore, we concluded that the albino G. velutina variants are fully mycoheterotrophic plants whose C derives mainly from saprotrophic rhizoctonia, while the green G. velutina variants are mainly autotrophic plants, at least at our study site, in spite of their additional associations with ectomycorrhizal fungi. This is the first report demonstrating that adult nonphotosynthetic albino variants can obtain their nutrition mainly from nonectomycorrhizal rhizoctonia.  相似文献   
172.
173.
174.
Vestibular hair cells (V–HCs) in the inner ear have important roles and various functions. When V–HCs are damaged, crippling symptoms, such as vertigo, visual field oscillation, and imbalance, are often seen. Recently, several studies have reported differentiation of embryonic stem (ES) cells, as pluripotent stem cells, to HCs, though a method for producing V–HCs has yet to be established. In the present study, we used vestibular cell conditioned medium (V-CM) and effectively induced ES cells to differentiate into V–HCs. Expressions of V-HC-related markers (Math1, Myosin6, Brn3c, Dnah5) were significantly increased in ES cells cultured in V-CM for 2 weeks, while those were not observed in ES cells cultured without V-CM. On the other hand, the cochlear HC-related marker Lmod3 was either not detected or detected only faintly in those cells when cultured in V-CM. Our results demonstrate that V-CM has an ability to specifically induce differentiation of ES cells into V–HCs.  相似文献   
175.
176.
Hosokawa N  Hara Y  Mizushima N 《FEBS letters》2007,581(15):2623-2629
Autophagy is an intracellular bulk degradation system. We established mouse fibroblast lines coupling the Tet-off system with an Atg5-/- mouse embryonic fibroblast line to artificially regulate autophagic ability. In the presence of doxycycline (Dox), Atg5 expression was completely suppressed and these cells were autophagy-defective. After removal of Dox, autophagic ability was restored within 6 h. Very low levels of Atg5 could induce an autophagy competent state. We applied this novel system to examine the contribution of autophagy to controlling cell size. Cell size reduction in response to starvation was significantly inhibited in cells unable to undergo autophagy. The generated cell lines will be useful reagents for future mechanistic studies into the regulation and physiologic significance of autophagy.  相似文献   
177.
Legumain/asparaginyl endopeptidase (EC 3.4.22.34) is a novel cysteine protease that is abundantly expressed in the late endosomes and lysosomes of renal proximal tubular cells. Recently, emerging evidence has indicated that legumain might play an important role in control of extracellular matrix turnover in various pathological conditions such as tumor growth/metastasis and progression of atherosclerosis. We initially found that purified legumain can directly degrade fibronectin, one of the main components of the extracellular matrix, in vitro. Therefore, we examined the effect of legumain on fibronectin degradation in cultured mouse renal proximal tubular cells. Fibronectin processing can be inhibited by chloroquine, an inhibitor of lysosomal degradation, and can be enhanced by the overexpression of legumain, indicating that fibronectin degradation occurs in the presence of legumain in lysosomes from renal proximal tubular cells. Furthermore, in legumain-deficient mice, unilateral ureteral obstruction (UUO)-induced renal interstitial protein accumulation of fibronectin and renal interstitial fibrosis were markedly enhanced. These findings indicate that legumain might have an important role in extracellular matrix remodeling via the degradation of fibronectin in renal proximal tubular cells.  相似文献   
178.
We have developed two experimental methods for observing Escherichia coli RecA-DNA filament under a fluorescence microscope. First, RecA-DNA filaments were visualized by immunofluorescence staining with anti-RecA monoclonal antibody. Although the detailed filament structures below submicron scale were unable to be measured accurately due to optical resolution limit, this method has an advantage to analyse a large number of RecA-DNA filaments in a single experiment. Thus, it provides a reliable statistical distribution of the filament morphology. Moreover, not only RecA filament, but also naked DNA region was visualized separately in combination with immunofluorescence staining using anti-DNA monoclonal antibody. Second, by using cysteine derivative RecA protein, RecA-DNA filament was directly labelled by fluorescent reagent, and was able to observe directly under a fluorescence microscope with its enzymatic activity maintained. We showed that the RecA-DNA filament disassembled in the direction from 5' to 3' of ssDNA as dATP hydrolysis proceeded.  相似文献   
179.
Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) is a prototypic sPLA(2) enzyme that may play roles in modification of eicosanoid biosynthesis as well as antibacterial defense. In several cell types, inducible expression of sPLA(2) by pro-inflammatory stimuli is attenuated by group IVA cytosolic PLA(2) (cPLA(2)alpha) inhibitors such as arachidonyl trifluoromethyl ketone, leading to the proposal that prior activation of cPLA(2)alpha is required for de novo induction of sPLA(2). However, because of the broad specificity of several cPLA(2)alpha inhibitors used so far, a more comprehensive approach is needed to evaluate the relevance of this ambiguous pathway. Here, we provide evidence that the induction of sPLA(2)-IIA by pro-inflammatory stimuli requires group VIB calcium-independent PLA(2) (iPLA(2)gamma), rather than cPLA(2)alpha, in rat fibroblastic 3Y1 cells. Results with small interfering RNA unexpectedly showed that the cytokine induction of sPLA(2)-IIA in cPLA(2)alpha knockdown cells, in which cPLA(2)alpha protein was undetectable, was similar to that in replicate control cells. By contrast, knockdown of iPLA(2)gamma, another arachidonyl trifluoromethyl ketone-sensitive intracellular PLA(2), markedly reduced the cytokine-induced expression of sPLA(2)-IIA. Supporting this finding, the R-enantiomer of bromoenol lactone, an iPLA(2)gamma inhibitor, suppressed the cytokine-induced sPLA(2)-IIA expression, whereas (S)-bromoenol lactone, an iPLA(2)beta inhibitor, failed to do so. Moreover, lipopolysaccharide-stimulated sPLA(2)-IIA expression was also abolished by knockdown of iPLA(2)gamma. These findings open new insight into a novel regulatory role of iPLA(2)gamma in stimulus-coupled sPLA(2)-IIA expression.  相似文献   
180.
Yamashita S  Oku M  Sakai Y 《Autophagy》2007,3(1):35-37
We recently showed that, in the yeast Pichia pastoris, an ergosterol glucoside synthesizing enzyme, Atg26, is recruited to the precursor of the pexophagic structure, micropexophagic membrane apparatus (MIPA), under the regulation of phosphatidylinositol 4'-monophosphate (PI4P)-signaling during pexophagy. Atg26 was found to harbor a novel PI4P-binding motif, the GRAM domain. Both lipids, PI4P and sterol glucoside, synthesized by PpPik1 and PpAtg26, respectively, were necessary for pexophagy, in the step where the MIPA was formed. In this addendum, we review these findings, and speculate on the mechanistic and physiological implications of the functions of these lipids during the autophagic process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号