全文获取类型
收费全文 | 13360篇 |
免费 | 1192篇 |
国内免费 | 1465篇 |
专业分类
16017篇 |
出版年
2024年 | 41篇 |
2023年 | 191篇 |
2022年 | 411篇 |
2021年 | 625篇 |
2020年 | 509篇 |
2019年 | 585篇 |
2018年 | 531篇 |
2017年 | 422篇 |
2016年 | 575篇 |
2015年 | 885篇 |
2014年 | 1022篇 |
2013年 | 1061篇 |
2012年 | 1368篇 |
2011年 | 1175篇 |
2010年 | 728篇 |
2009年 | 669篇 |
2008年 | 775篇 |
2007年 | 666篇 |
2006年 | 633篇 |
2005年 | 493篇 |
2004年 | 407篇 |
2003年 | 359篇 |
2002年 | 280篇 |
2001年 | 198篇 |
2000年 | 182篇 |
1999年 | 166篇 |
1998年 | 128篇 |
1997年 | 105篇 |
1996年 | 87篇 |
1995年 | 85篇 |
1994年 | 98篇 |
1993年 | 58篇 |
1992年 | 74篇 |
1991年 | 69篇 |
1990年 | 41篇 |
1989年 | 44篇 |
1988年 | 30篇 |
1987年 | 31篇 |
1986年 | 27篇 |
1985年 | 32篇 |
1984年 | 16篇 |
1983年 | 11篇 |
1982年 | 11篇 |
1981年 | 13篇 |
1980年 | 9篇 |
1978年 | 10篇 |
1976年 | 10篇 |
1975年 | 11篇 |
1973年 | 8篇 |
1970年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
以短乳杆菌为研究对象,通过基因组重排技术选育胸苷磷酸化酶高产菌株。首先采用紫外复合诱变筛选出EA42、EB27作为基因组重排育种的亲本并制备成原生质体,分别采用紫外照射50min和60℃水浴加热60min双亲灭活原生质体,然后用质量分数40%PEG6000,30℃恒温诱导融合10min进行基因组重排。经过3轮基因组重排育种,成功选育出3株胸苷磷酸化酶高产菌株,其中菌株F3-36在菌体发酵量提高的前提下,进行5次传代测试其胸苷磷酸化酶活均在2.500U/mg湿菌体,比原始菌株酶活提高了260%。 相似文献
992.
993.
994.
为进行PCR实验建立了一种两步裂解血清HBV提取其DNA的方法。该法首先用SDS及蛋白酶消化裂解病毒,随后再进行碱裂解,操作较酚提取法大为简化,而PCR实验进行的两法的灵敏性比较,说明双裂解法至少不低于酚法。 相似文献
995.
皖南、赣北奥陶纪笔石立体标本形成环境的初步研究* 总被引:1,自引:0,他引:1
皖南、赣东北和赣西北地区奥陶纪笔石地层发育良好,笔石化石丰富。宁国组和胡乐组均为笔石相地层,但笔石的保存特点并不相同。立体保存的黄铁矿化笔石标本主要见于宁国组,而胡乐组的笔石几乎均为薄膜标本。在比较宁国组和胡乐组在岩性、颜色、化石、矿物和元素等方面的特点后发现,两者有较明显的差异。这表明宁国组和胡乐组形成时的环境是不同的,前者为弱还原环境,后者为较强的还原环境,而在研究区内影响笔石体立体保存的主要因素为还原环境和较高的铁含量。在还原环境下,铁可呈Fe~(2+)存在,笔石体内含有硫,死亡后经降解作用可生成H_2S;H_2S和Fe~(2+)结合可使笔石体黄铁矿化,从而使笔石体硬化而呈立体保存下来。宁国组的铁含量明显高于胡乐组,这似可以解释宁国组产有较多笔石立体标本的原因。 相似文献
996.
微小型生物反应器体积微小但在线分析检测和过程控制功能媲美台式装备。其核心支撑技术包括一次性材料及微加工技术、非接触式光学传感器、自动化以及实验设计(DOE)、数据分析软件与过程控制的整合。由于体积微小、湍流程度和单位能耗较低,微小型反应器内的混合、传质、剪切特性与工业规模设备有一定的区别。现阶段微小型生物反应器主要用于菌株和细胞系筛选和工艺优化,在实现高通量工艺的同时确保了数据的丰度,对缩短研发周期和加速产品上市,尤其是在应对突发性传染性疾病方面有着重要的意义。未来,精准医疗概念的落实也依赖功能柔性化的微小型生物反应器系统。 相似文献
997.
998.
Abstract: The Na+ /Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+ /Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+ /Ca2+ exchanger of these cells. Cells treated with 1 m M dibutyryl cyclic AMP (dbcAMP), 1 µ M phorbol 12,13-dibutyrate, 1 µ M okadaic acid, or 100 n M calyculin A showed lowered Na+ /Ca2+ exchange activity and prolonged cytosolic Ca2+ transients caused by depolarization. A combination of 10 n M okadaic acid and 1 µ M dbcAMP synergistically inhibited Na+ /Ca2+ exchange activity. Conversely, 50 µ M 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, a protein kinase inhibitor, enhanced Na+ /Ca2+ exchange activity. Moreover, we used cyclic AMP-dependent protein kinase and calcium phospholipid-dependent protein kinase catalytic subunits to phosphorylate isolated membrane vesicles and found that the Na+ /Ca2+ exchange activity was inhibited by this treatment. These results indicate that reversible protein phosphorylation modulates the activity of the Na+ /Ca2+ exchanger and suggest that modulation of the exchanger may play a role in the regulation of secretion. 相似文献
999.
目的研究大鼠局灶性脑缺血再灌注损伤后神经元和星形胶质细胞表达量的动态演变及各自cyclin D1的表达差异。方法建立大鼠大脑中动脉阻塞(MCAO)再灌注模型,随机分为再灌注后1d组,3d组,7d组,14d组和假手术组,应用流式细胞术检测各组再灌注后不同时间点神经元和星形胶质细胞数量变化及各自cyclin D1的表达。结果缺血侧梗死边缘区皮质星形胶质细胞的表达增加,而神经元的表达下降,与假手术组比较有明显差异(P〈0.05);神经元和星形胶质细胞中各自cyclin D1的表达在再灌注7d、14d后表达上调,且星形胶质细胞中的cyclinD1增加更明显,与假手术组比较有统计学差异(P〈0.05)。结论大鼠脑缺血再灌注后,缺血侧梗死边缘区皮质星形胶质细胞和神经元的cyclinD1表达均有不同程度的上调,星形胶质细胞的cyclin D1表达上调比神经元的更为显著。 相似文献
1000.
Xunhua Zheng Baoling Mei Yinghong Wang Baohua Xie Yuesi Wang Haibo Dong Hui Xu Guanxiong Chen Zucong Cai Jin Yue Jiangxin Gu Fang Su Jianwen Zou Jianguo Zhu 《Plant and Soil》2008,311(1-2):211-234
With regard to measuring nitrous oxide (N2O) emissions from biological sources, there are three most widely adopted methods that use gas chromatograph with an electron capture detector (GC–ECD). They use: (a) nitrogen (N2) as the carrier gas (DN); (b) ascarite as a carbon dioxide (CO2) trap with DN (DN-Ascarite); and (c) a mixture gas of argon and methane as the carrier (AM). Additional methods that use either a mixture of argon and methane (or of CO2 and N2) as a make-up gas with the carrier nitrogen or soda lime (or ascarite) as a CO2 trap with the carrier helium have also been adopted in a few studies. To test the hypothesis that the use of DN sometimes considerably biases measurements of N2O emissions from plants, soils or soil–plant systems, experiments were conducted involving DN, AM and DN-Ascarite. When using DN, a significant relationship appeared between CO2 concentrations and the apparent N2O concentrations in air samples. The use of DN led to significantly overestimated N2O emissions from detached fresh plants in static chamber enclosures. Meanwhile, comparably lower emissions were found when using either the DN-Ascarite or AM methods. When an N2O flux (from a soil or a soil–plant system), measured by DN in combination with sampling from the enclosure of a static opaque chamber, was greater than 200 μg N m?2 h?1, no significant difference was found between DN and DN-Ascarite. When the DN-measured fluxes were within the ranges of <?30, ?30–0, 0–30, 30–100 and 100–200 μg N m?2 h?1, significant differences that amounted to ?72, ?22, 5, 38 and 64 μg N m?2 h?1, respectively, appeared in comparison to DN-Ascarite. As a result, the DN measurements in rice–wheat and vegetable fields overestimated both annual total N2O emissions (by 7–62%, p?<?0.05) and direct emission factors for applied nitrogen (by 6–65%). These results suggest the necessity of reassessing the available data determined from DN measurements before they are applied to inventory estimation. Further studies are required to explore appropriate approaches for the necessary reassessment. Our results also imply that the DN method should not be adopted for measuring N2O emissions from weak sources (e.g., with intensities less than 200 μg N m?2 h?1). In addition, we especially do not recommend the use of DN to simultaneously measure N2O and CO2 with the same ECD. 相似文献