首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9742篇
  免费   917篇
  国内免费   1248篇
  11907篇
  2024年   53篇
  2023年   216篇
  2022年   461篇
  2021年   698篇
  2020年   521篇
  2019年   556篇
  2018年   516篇
  2017年   393篇
  2016年   532篇
  2015年   675篇
  2014年   864篇
  2013年   833篇
  2012年   992篇
  2011年   850篇
  2010年   470篇
  2009年   471篇
  2008年   494篇
  2007年   437篇
  2006年   323篇
  2005年   277篇
  2004年   245篇
  2003年   157篇
  2002年   175篇
  2001年   80篇
  2000年   85篇
  1999年   65篇
  1998年   51篇
  1997年   49篇
  1996年   34篇
  1995年   41篇
  1994年   37篇
  1993年   23篇
  1992年   29篇
  1991年   31篇
  1990年   31篇
  1989年   33篇
  1988年   14篇
  1987年   19篇
  1986年   11篇
  1985年   9篇
  1983年   11篇
  1982年   8篇
  1981年   4篇
  1979年   3篇
  1977年   5篇
  1973年   3篇
  1966年   2篇
  1962年   2篇
  1950年   2篇
  1940年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Diao Y  Guo X  Li Y  Sun K  Lu L  Jiang L  Fu X  Zhu H  Sun H  Wang H  Wu Z 《Cell Stem Cell》2012,11(2):231-241
In mouse skeletal muscles, Pax7 uniquely marks muscle satellite cells and plays some important yet unknown functions at the perinatal stage. To elucidate its in vivo functions, we initiated a yeast two-hybrid screening to look for Pax7-interacting proteins and identified a previously uncharacterized Pax7- and Pax3-binding protein (Pax3/7BP). Pax3/7BP is a ubiquitously expressed nuclear protein, enriched in Pax7+ muscle precursor cells (MPCs), and serves as an indispensable adaptor for Pax7 to recruit the histone 3 lysine 4 (H3K4) methyltransferase (HMT) complex by bridging Pax7 and Wdr5. Knockdown of Pax3/7BP abolished the Pax3/7-associated H3K4 HMT activity and inhibited the proliferation of Pax7+ MPCs from young mice both in culture and in vivo. Id3 and Cdc20 were direct target genes of Pax7 and Pax3/7BP involved in the proliferation of Pax7+ MPCs. Collectively, our work establishes Pax3/7BP as an essential adaptor linking Pax3/7 with the H3K4 HMT to regulate the proliferation of MPCs.  相似文献   
22.
Chen J  Wen H  Liu J  Yu C  Zhao X  Shi X  Xu G 《Molecular bioSystems》2012,8(3):871-878
Acute graft rejection is one of the most common and serious post complications in renal transplantation, noninvasive diagnosis of acute graft rejection is essential for reducing risk of surgery and timely treatment. In this study, a non-targeted metabonomics approach based on ultra performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight mass spectrometry (MS) is used to investigate the effect of acute graft rejection in rat renal transplantation on metabolism. To collect more metabolite information both hydrophilic interaction chromatography and reversed-phase liquid chromatography were used. Using the partial least squares-discriminant analysis, we found that the change of metabonome in a sham-operated group and a non-graft rejection group had a similar trend, while that of the acute graft rejection group was clearly different. Several discriminating metabolites of the acute graft rejection were identified, including creatinine, phosphatidyl-cholines, lyso-phosphatidylcholines, carnitine C16:0, free fatty acids and indoxyl sulfate etc. These discriminating metabolites suggested that acute graft rejection in renal transplantation can lead to the accumulation of creatinine in the body, and also the abnormal metabolism of phospholipids. These findings are useful to understand the mechanisms of the rejection, it also means that a UPLC-MS metabonomic approach is a suitable tool to investigate the metabolic abnormality in the acute graft rejection in renal transplantation.  相似文献   
23.
Genistein, the major isoflavone in soybean, was recently reported to exert beneficial effects in metabolic disorders and inflammatory diseases. In the present study, we investigated the effects and mechanisms of a dietary concentration of genistein on the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. Our results demonstrated that genistein effectively inhibited the LPS-induced overproduction of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), as well as LPS-induced nuclear factor kappa B (NF-κB) activation. In addition, the data also showed that genistein prevented LPS-induced decrease in adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. These effects were obviously attenuated by an AMPK inhibitor. Taken together, our results suggest that the dietary concentration of genistein is able to attenuate inflammatory responses via inhibition of NF-κB activation following AMPK stimulation. The data provide direct evidence for the potential application of low concentrations of genistein in the prevention and treatment of inflammatory diseases.  相似文献   
24.
Six volunteers experienced severe inflammatory response during the Phase I clinical trial of a monoclonal antibody that was designed to stimulate a regulatory T cell response. Soon after the trial began, each volunteer experienced a “cytokine storm”, a dramatic increase in cytokine concentrations. The monoclonal antibody, TGN1412, raised serum concentrations of both pro- and anti-inflammatory cytokines το very hiγh values during the first day, while lymphocyte and monocyte concentrations plummeted. Because the subjects were healthy and had no prior indications of immune deficiency, this event provided an unusual opportunity to study the dynamic interactions of cytokines and other measured parameters. Here, the response histories of nine cytokines have been modeled by a set of linear ordinary differential equations. A general search procedure identifies parameters of the model, whose response fits the data well during the five-day measurement period. The eighteenth-order model reveals plausible cause-and-effect relationships among the cytokines, showing how each cytokine induces or inhibits other cytokines. It suggests that perturbations in IL2, IL8, and IL10 have the most significant inductive effect, while IFN-γ and IL12 have the greatest inhibiting effect on other cytokine concentrations. Although TNF-α is a major pro-inflammatory factor, IFN-γ and three other cytokines have faster initial and median response to TGN1412 infusion. Principal-component analysis of the data reveals three clusters of similar cytokine responses: [TNF-α, IL1, IL10], [IFN-γ, IL2, IL4, IL8, and IL12], and [IL6]. IL1, IL6, IL10, and TNF-α have the highest degree of variability in response to uncertain initial conditions, exogenous effects, and parameter estimates. This study illuminates details of a cytokine storm event, and it demonstrates the value of linear modeling for interpreting complex, coupled biological system dynamics from empirical data.  相似文献   
25.
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental condition characterized by atypical social interaction and communication together with repetitive behaviors and restricted interests. The prevalence of ASD has been increased these years. Compelling evidence has shown that genetic factors contribute largely to the development of ASD. However, knowledge about its genetic etiology and pathogenesis is limited. Broad applications of genomics studies have revealed the importance of gene mutations at protein-coding regions as well as the interrupted non-coding regions in the development of ASD. In this review, we summarize the current evidence for the known molecular genetic basis and possible pathological mechanisms as well as the risk genes and loci of ASD. Functional studies for the underlying mechanisms are also implicated. The understanding of the genetics and genomics of ASD is important for the genetic diagnosis and intervention for this condition.  相似文献   
26.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   
27.

Background

Interleukin-35 (IL-35) has recently been identified as an immunosuppressive cytokine that has been used as a potential therapy for chronic inflammatory and autoimmune diseases. However, there remains a paucity of data regarding its potential benefits after integration into mesenchymal stem cells (MSCs).

Methods

We used a dextran sulfate sodium (DSS)–induced colitis mice model and treated them with IL-35-MSCs, MSCs or saline. The body weight was recorded daily and inflammatory processes were determined. Cytokine secretion by lamina propria lymphocytes (LPLs) and percentage of regulatory T cells (Tregs) were also measured.

Results

The data showed that mice in the two treated groups recovered their body weight more rapidly than mice treated with saline in the later stage of colitis. The colon lengths of IL-35-MSC–treated mice were markedly longer than those in the other two groups and the inflammation reduced significantly. Furthermore, the percentage of Foxp3?+?Tregs increased significantly and the level of proinflammatory cytokines produced by LPLs decreased significantly in the IL-35-MSC–treated group.

Discussion

The results demonstrate that IL-35-MSCs could ameliorate ulcerative colitis by down-regulating the expression of pro-inflammatory cytokines.  相似文献   
28.
Acute coronary syndromes and acute myocardial infarctions are often related to plaque rupture and the formation of thrombi at the site of the rupture. We examined fresh coronary thrombectomy specimens from patients with acute coronary syndromes and assessed their structure and cellularity. The thrombectomy specimens consisted of platelets, erythrocytes and inflammatory cells. Several specimens contained multiple cholesterol crystals. Culture of thrombectomy specimens yielded cells growing in various patterns depending on the culture medium used. Culture in serum‐free stem cell enrichment medium yielded cells with features of endothelial progenitor cells which survived in culture for a year. Immunohistochemical analysis of the thrombi revealed cells positive for CD34, cells positive for CD15 and cells positive for desmin in situ, whereas cultured cell from thrombi was desmin positive but pancytokeratin negative. Cells cultured in endothelial cell medium were von Willebrand factor positive. The content of coronary thrombectomy specimens is heterogeneous and consists of blood cells but also possibly cells from the vascular wall and cholesterol crystals. The culture of cells contained in the specimens yielded multiplying cells, some of which demonstrated features of haematopoietic progenitor cells and which differentiated into various cell‐types.  相似文献   
29.
30.
Vascular function, vascular structure, and homeostasis are thought to be regulated in part by nitric oxide (NO) released by endothelial cell nitric oxide synthase (eNOS), and NO released by eNOS plays an important role in modulating metabolism of skeletal and cardiac muscle in health and disease. The pig is an optimal model for human diseases because of the large number of important similarities between the genomic, metabolic and cardiovascular systems of pigs and humans. To gain a better understanding of cardiovascular regulation by eNOS we produced pigs carrying an endogenous eNOS gene driven by a Tie-2 promoter and tagged with a V5 His tag. Nuclear transfer was conducted to create these animals and the effects of two different oocyte activation treatments and two different culture systems were examined. Donor cells were electrically fused to the recipient oocytes. Electrical fusion/activation (1 mM calcium in mannitol: Treatment 1) and electrical fusion (0.1 mM calcium in mannitol)/chemical activation (200 μM Thimerosal for 10 min followed by 8 mM DTT for 30 min: Treatment 2) were used. Embryos were surgically transferred to the oviducts of gilts that exhibited estrus on the day of fusion or the day of transfer. Two cloned transgenic piglets were born from Treatment 1 and low oxygen, and another two from Treatment 2 and normal oxygen. PCR, RT-PCR, Western blotting and immunohistochemistry confirmed that the pigs were transgenic, made message, made the fusion protein and that the fusion protein localized to the endothelial cells of placental vasculature from the conceptuses as did the endogenous eNOS. Thus both activation conditions and culture systems are compatible with development to term. These pigs will serve as the founders for a colony of miniature pigs that will help to elucidate the function of eNOS in regulating muscle metabolism and the cardiorespiratory system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号