首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9878篇
  免费   940篇
  国内免费   1292篇
  12110篇
  2024年   54篇
  2023年   218篇
  2022年   464篇
  2021年   707篇
  2020年   530篇
  2019年   569篇
  2018年   519篇
  2017年   397篇
  2016年   537篇
  2015年   690篇
  2014年   871篇
  2013年   854篇
  2012年   1016篇
  2011年   867篇
  2010年   481篇
  2009年   485篇
  2008年   511篇
  2007年   446篇
  2006年   330篇
  2005年   278篇
  2004年   246篇
  2003年   158篇
  2002年   175篇
  2001年   83篇
  2000年   86篇
  1999年   66篇
  1998年   51篇
  1997年   47篇
  1996年   37篇
  1995年   43篇
  1994年   37篇
  1993年   23篇
  1992年   29篇
  1991年   31篇
  1990年   32篇
  1989年   33篇
  1988年   14篇
  1987年   19篇
  1986年   11篇
  1985年   9篇
  1983年   11篇
  1982年   8篇
  1981年   4篇
  1979年   3篇
  1977年   5篇
  1973年   3篇
  1966年   2篇
  1962年   2篇
  1950年   2篇
  1940年   2篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
71.
天然雌核发育贵州普安鲫(A型)染色体组型的初步研究   总被引:5,自引:0,他引:5  
普安鲫(Carassius auratus)原产于贵州省普安县青山镇一带的天然水体中,它有3个不同类型(A、B和C型)的种群。目前除了A型在野外未见雄性个体外,B和C型都是两性型种群,它们同地共栖,且行天然雌核发育。    相似文献   
72.
73.
Changes in volatile content, as well as associated gene expression and enzyme activity in developing cucumber fruits were investigated in two Cucumis sativus L. lines (No. 26 and No. 14) that differ significantly in fruit flavor. Total volatile, six-carbon (C6) aldehyde, linolenic and linoleic acid content were higher during the early stages, whereas the nine-carbon (C9) aldehyde content was higher during the latter stages in both lines. Expression of C. sativus hydroperoxide lyase (CsHPL) mirrored 13-hydroperoxide lyase (13-HPL) enzyme activity in variety No. 26, whereas CsHPL expression was correlated with 9-hydroperoxide lyase (9-HPL) enzyme activity in cultivar No. 14. 13-HPL activity decreased significantly, while LOX (lipoxygenase) and 9-HPL activity increased along with fruit ripening in both lines, which accounted for the higher C6 and C9 aldehyde content at 0-6 day post anthesis (dpa) and 9-12 dpa, respectively. Volatile compounds from fruits at five developmental stages were analyzed by principal component analysis (PCA), and heatmaps of volatile content, gene expression and enzyme activity were constructed.  相似文献   
74.
Huang Y  Haley CS  Wu F  Hu S  Hao J  Wu C  Li N 《Animal genetics》2007,38(2):114-119
Quantitative trait loci (QTL) for carcass and meat quality traits were detected in a sample of 224 progeny from four males in line VI and 12 females in line V of Beijing ducks. These lines were selected for high body weight at 42 days of age (line VI) or high egg production at 360 days of age (line V). Traits were weights of the carcass, head, neck, shanks, wings, legs, thighs, breast, heart, liver, crop, gizzard, abdominal fat (AFW) and skin fat, as well as fat thickness in the tail, and pH value, shear force, drip loss (DL) (%) and cooking loss (CL) (%) of the breast. Using a half-sib analysis with a multiple QTL model, linkage between the carcass and meat quality traits and 95 microsatellite markers was investigated. Eight genome-wide significant QTL for weight of crop, skin fat, liver, neck, shanks, wings, DL were detected on linkage groups CAU4 and CAU6. One genome-wide suggestive QTL and one chromosome-wide significant QTL for weight of breast were found on CAU1 and CAU4 respectively. Fifteen chromosome-wide suggestive QTL influencing weight of AFW, breast, crop, heart, carcass, thighs, liver, shanks, gizzard, fat thickness in tail, DL (%) and CL (%) were mapped on CAU2, CAU4, CAU5, CAU6, CAU7, CAU10 and CAU13. In addition, two linked QTL for weight of liver and DL (%) were located on CAU2 and CAU7 respectively. The detection of QTL in ducks is a step towards identification of genes influencing these traits and their use for genetic improvement in this species.  相似文献   
75.
Four new alkaloids, daphnioldhanins D-G (1-4, resp.), together with five known alkaloids, daphmacropodine (5), secodaphniphylline (6), deoxycalyciphylline B (7), deoxyisocalyciphylline B (8), and daphmanidin A (9), were isolated from the roots of Daphniphyllum oldhami. Their structures were elucidated on the basis of spectroscopic data and chemical methods. Compound 1 at 2.0 microM showed potent antioxidant activity against H(2)O(2)-induced impairment in PC12 cells.  相似文献   
76.
Zhou X  Zhang Z  Xu Y  Jin C  He H  Hao X  Qian PY 《Biofouling》2009,25(1):69-76
To determine whether they could serve as non-toxic or less damaging alternative antifouling (AF) agents, 17 flavone and isoflavone derivatives were isolated from terrestrial plant extracts, purified and examined for their ability to inhibit the settlement of barnacle (Balanus amphitrite) cyprids. In larval bioassays, eight compounds showed strong anti-larval settlement activities, with EC(50) values <10 microg ml(-1). Through an analysis of the structure-activity relationship of these compounds, it was found that (1) the structural difference between flavones and isoflavones did not affect their AF activities; (2) the 5-hydroxyl group on the skeletons played a key role in AF activities; and (3) the presence of hydroxyl group or bulky group on C3 significantly reduced AF activities. A hydrolysis experiment using genistein, a typical active compound in this study, indicated that it was decomposed in the marine environment by hydrolysis reaction and that the degradation speed was significantly affected by pH. In a field AF test, genistein inhibited the attachment of B. amphitrite on panels coated with genistein-paint mixtures.  相似文献   
77.
78.
Forest growth is sensitive to interannual climatic change in the alpine treeline ecotone (ATE). Whether the alpine treeline ecotone shares a similar pattern of forest growth with lower elevational closed forest belt (CFB) under changing climate remains unclear. Here, we reported an unprecedented acceleration of Picea schrenkiana forest growth since 1960s in the ATE of Tianshan Mountains, northwestern China by a stand‐total sampling along six altitudinal transects with three plots in each transect: one from the ATE between the treeline and the forest line, and the other two from the CFB. All the sampled P. schrenkiana forest patches show a higher growth speed after 1960 and, comparatively, forest growth in the CFB has sped up much slower than that in the ATE. The speedup of forest growth at the ATE is mainly accounted for by climate factors, with increasing temperature suggested to be the primary driver. Stronger water deficit as well as more competition within the CFB might have restricted forest growth there more than that within the ATE, implying biotic factors were also significant for the accelerated forest growth in the ATE, which should be excluded from simulations and predictions of warming‐induced treeline dynamics.  相似文献   
79.
The aim of this study was to investigate whether a moderate‐intensity static magnetic field (SMF) can enhance the killing effect of adriamycin (ADM) on K562 cells, and to explore the effects of SMF combined with ADM on K562 cells. We analyzed the metabolic activity of cells, cell cycle distribution, DNA damage, change in cell ultrastructure, and P‐glycoprotein (P‐gp) expression after K562 cells were exposed continuously to a uniform 8.8 mT SMF for 12 h, with or without ADM. Our results showed that the SMF combined with ADM (25 ng/ml) significantly inhibited the metabolic activity of K562 cells (P < 0.05), while neither ADM nor the SMF alone affected the metabolic activity of these cells. Cell ultrastructure was altered in the SMF + ADM group. For example, cell membrane was depressed, some protuberances were observable, and vacuoles in the cytoplasm became larger. Cells were arrested at the G2/M phase and DNA damage increased after cells were treated with the SMF plus ADM. ADM also induced the P‐gp expression. In contrast, in the SMF group and SMF + ADM group, the P‐gp expression was decreased compared with the ADM group. Taken together, our results showed that the 8.8 mT SMF enhanced the cytotoxity potency of ADM on K562 cells, and the decrease in P‐gp expression may be one reason underlying this effect. Bioelectromagnetics 32:191–199, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号