首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9675篇
  免费   927篇
  国内免费   1236篇
  2024年   42篇
  2023年   196篇
  2022年   429篇
  2021年   696篇
  2020年   519篇
  2019年   556篇
  2018年   516篇
  2017年   393篇
  2016年   532篇
  2015年   675篇
  2014年   864篇
  2013年   834篇
  2012年   992篇
  2011年   852篇
  2010年   470篇
  2009年   471篇
  2008年   494篇
  2007年   435篇
  2006年   322篇
  2005年   276篇
  2004年   245篇
  2003年   157篇
  2002年   175篇
  2001年   80篇
  2000年   86篇
  1999年   65篇
  1998年   51篇
  1997年   47篇
  1996年   34篇
  1995年   41篇
  1994年   37篇
  1993年   23篇
  1992年   29篇
  1991年   31篇
  1990年   31篇
  1989年   33篇
  1988年   14篇
  1987年   19篇
  1986年   11篇
  1985年   9篇
  1983年   11篇
  1982年   8篇
  1981年   4篇
  1979年   3篇
  1977年   5篇
  1973年   3篇
  1966年   2篇
  1962年   2篇
  1950年   2篇
  1940年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
271.
272.
Gain-of-function mutations in the calcium channel TRPC6 lead to autosomal dominant focal segmental glomerulosclerosis and podocyte expression of TRPC6 is increased in some acquired human glomerular diseases, particularly in membranous nephropathy. These observations led to the hypothesis that TRPC6 overactivation is deleterious to podocytes through pathological calcium signaling, both in genetic and acquired diseases. Here, we show that the effects of TRPC6 on podocyte function are context-dependent. Overexpression of TRPC6 alone did not directly affect podocyte morphology and cytoskeletal structure. Unexpectedly, however, overexpression of TRPC6 protected podocytes from complement-mediated injury, whereas genetic or pharmacological TRPC6 inactivation increased podocyte susceptibility to complement. Mechanistically, this effect was mediated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. Podocyte-specific TRPC6 transgenic mice showed stronger CaMKII activation, reduced podocyte foot process effacement and reduced levels of proteinuria during nephrotoxic serum nephritis, whereas TRPC6 null mice exhibited reduced CaMKII activation and higher levels of proteinuria compared with wild type littermates. Human membranous nephropathy biopsy samples showed podocyte staining for active CaMKII, which correlated with the degree of TRPC6 expression. Together, these data suggest a dual and context dependent role of TRPC6 in podocytes where acute activation protects from complement-mediated damage, but chronic overactivation leads to focal segmental glomerulosclerosis.  相似文献   
273.
At the interface between host and external environment, the airway epithelium serves as a major protective barrier. In the present study we show that protein kinase D (PKD) plays an important role in the formation and integrity of the airway epithelial barrier. Either inhibition of PKD activity or silencing of PKD increased transepithelial electrical resistance (TEER), resulting in a tighter epithelial barrier. Among the three PKD isoforms, PKD3 knockdown was the most efficient one to increase TEER in polarized airway epithelial monolayers. In contrast, overexpression of PKD3 wild type, but not PKD3 kinase-inactive mutant, disrupted the formation of apical intercellular junctions and their reassembly, impaired the development of TEER, and increased paracellular permeability to sodium fluorescein in airway epithelial monolayers. We further found that overexpression of PKD, in particular PKD3, markedly suppressed the mRNA and protein levels of claudin-1 but had only minor effects on the expression of other tight junctional proteins (claudin-3, claudin-4, claudin-5, occludin, and ZO-1) and adherent junctional proteins (E-cadherin and β-catenin). Immunofluorescence study revealed that claudin-1 level was markedly reduced and almost disappeared from intercellular contacts in PKD3-overexpressed epithelial monolayers and that claudin-4 was also restricted from intercellular contacts and tended to accumulate in the cell cytosolic compartments. Last, we found that claudin-1 knockdown prevented TEER elevation by PKD inhibition or silencing in airway epithelial monolayers. These novel findings indicate that PKD negatively regulates human airway epithelial barrier formation and integrity through down-regulation of claudin-1, which is a key component of tight junctions.  相似文献   
274.
275.
The promyelocytic leukemia protein is a well known tumor suppressor, but its role in metabolism is largely unknown. Mice with a deletion in the gene for PML (KO mice) exhibit altered gene expression in liver, adipose tissue, and skeletal muscle, an accelerated rate of fatty acid metabolism, abnormal glucose metabolism, constitutive AMP-activating kinase (AMPK) activation, and insulin resistance in skeletal muscle. Last, an increased rate of energy expenditure protects PML KO mice from the effects of obesity induced by a Western diet. Collectively, our study uncovers a previously unappreciated role of PML in the regulation of metabolism and energy balance in mice.  相似文献   
276.
277.
AimsAntitumour effects of pentapeptide (LH) derived from donkey serum albumin hydrolysates were tested against tumour cells both in vitro and in vivo. The mechanism of LH induced tumour cell apoptosis was investigated.Main methodsHuman promyelocytic leukaemia cells (HL 60) were cultured to observe inhibition in vitro. Two animal models, a solid tumour and a non-entity myeloid leukaemia tumour, were used to determine the effect of LH in vivo. The former, fifty BALB/c nude mice were transplanted with HL 60 cells. The tumours were isolated completely and weighed after treatment. The latter, fifty BALB/c mice were injected intravenously with transplantable erythroblastic leukaemia cells (EL9611 cells). The survival time of mice was recorded and organs were used for histological study. The mechanism about tumour cell apoptosis was evaluated using fluorescence-activated cell sorting and transmission electron microscope for morphological assays.Key findingsThe LH inhibited tumour cell proliferation and the inhibitions were dependent on both the concentration and the dose; the best inhibition rate was up to 70% of the untreated control in vitro.It markedly inhibited the growth of a transplanted tumour with HL 60 cells in an immune-deficient nude mouse model. LH was also able to prolong the survival time of leukaemia mice with transplanted EL9611 cells and prevent the infiltration of leukaemia cells to the main internal organs.SignificanceThe LH peptide is an excellent inhibitor of tumour cell growth. These data provide the experimental foundation to use the LH peptide as a candidate for antitumour drugs in the future.  相似文献   
278.
Abstract

The deployment of high-altitude vehicles in near space with the purpose of providing Internet, communication, and other services represents the new frontier of aerospace activities. Near-space operations are attracting growing interest due to their mult-purpose nature and their anticipated high profitability. Despite such positive perceptions, near-space plans are, however, hampered by the uncertain international legal status of near space. Using the precedent of the exclusive economic zone (EEZ), this article suggests a new categorization of the near space as the exclusive utilization space (EUS) and a set of rules to manage its utilization.  相似文献   
279.
Mortierella alpina is a filamentous fungus commonly found in soil that is able to produce lipids in the form of triacylglycerols that account for up to 50% of its dry weight. Analysis of the M. alpina genome suggests that there is a phenylalanine-hydroxylating system for the catabolism of phenylalanine, which has never been found in fungi before. We characterized the phenylalanine-hydroxylating system in M. alpina to explore its role in phenylalanine metabolism and its relationship to lipid biosynthesis. Significant changes were found in the profile of fatty acids in M. alpina grown on medium containing an inhibitor of the phenylalanine-hydroxylating system compared to M. alpina grown on medium without inhibitor. Genes encoding enzymes involved in the phenylalanine-hydroxylating system (phenylalanine hydroxylase [PAH], pterin-4α-carbinolamine dehydratase, and dihydropteridine reductase) were expressed heterologously in Escherichia coli, and the resulting proteins were purified to homogeneity. Their enzymatic activity was investigated by high-performance liquid chromatography (HPLC) or visible (Vis)-UV spectroscopy. Two functional PAH enzymes were observed, encoded by distinct gene copies. A novel role for tetrahydrobiopterin in fungi as a cofactor for PAH, which is similar to its function in higher life forms, is suggested. This study establishes a novel scheme for the fungal degradation of an aromatic substance (phenylalanine) and suggests that the phenylalanine-hydroxylating system is functionally significant in lipid metabolism.  相似文献   
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号