首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9670篇
  免费   925篇
  国内免费   1230篇
  2024年   41篇
  2023年   196篇
  2022年   375篇
  2021年   696篇
  2020年   519篇
  2019年   552篇
  2018年   510篇
  2017年   392篇
  2016年   534篇
  2015年   676篇
  2014年   866篇
  2013年   837篇
  2012年   993篇
  2011年   852篇
  2010年   472篇
  2009年   474篇
  2008年   495篇
  2007年   437篇
  2006年   324篇
  2005年   279篇
  2004年   246篇
  2003年   157篇
  2002年   175篇
  2001年   81篇
  2000年   85篇
  1999年   68篇
  1998年   54篇
  1997年   49篇
  1996年   37篇
  1995年   41篇
  1994年   38篇
  1993年   26篇
  1992年   30篇
  1991年   31篇
  1990年   31篇
  1989年   33篇
  1988年   14篇
  1987年   19篇
  1986年   13篇
  1985年   10篇
  1984年   3篇
  1983年   13篇
  1982年   8篇
  1981年   7篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1973年   3篇
  1950年   2篇
  1940年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.  相似文献   
102.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   
103.
Human umbilical cord mesenchymal stem cell‐derived exosomes (hucMSC‐exosomes) have been implicated as a novel therapeutic approach for tissue injury repair and regeneration, but the effects of hucMSC‐exosomes on coxsackievirus B3 (CVB3)‐induced myocarditis remain unknown. The object of the present study is to investigate whether hucMSC‐exosomes have therapeutic effects on CVB3‐induced myocarditis (VMC). HucMSC‐exosomes were identified using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blot. The purified hucMSC‐exosomes tagged with PKH26 were tail intravenously injected into VMC model mice in vivo and used to administrate CVB3‐infected human cardiomyocytes (HCMs) in vitro, respectively. The effects of hucMSC‐exosomes on myocardial pathology injury, proinflammatory cytokines and cardiac function were evaluated through haematoxylin and eosin (H&E) staining, quantitative polymerase chain reaction (qPCR) and Doppler echocardiography. The anti‐apoptosis role and potential mechanism of hucMSC‐exosomes were explored using TUNEL staining, flow cytometry, immunohistochemistry, Ad‐mRFP‐GFP‐LC3 transduction and Western blot. In vivo results showed that hucMSC‐exosomes (50 μg iv) significantly alleviated myocardium injury, shrank the production of proinflammatory cytokines and improved cardiac function. Moreover, in vitro data showed that hucMSC‐exosomes (50 μg/mL) inhibited the apoptosis of CVB3‐infected HCM through increasing pAMPK/AMPK ratio and up‐regulating autophagy proteins LC3II/I, BECLIN‐1 and anti‐apoptosis protein BCL‐2 as well as decreasing pmTOR/mTOR ratio, promoting the degradation of autophagy flux protein P62 and down‐regulating apoptosis protein BAX. In conclusion, hucMSC‐exosomes could alleviate CVB3‐induced myocarditis via activating AMPK/mTOR‐mediated autophagy flux pathway to attenuate cardiomyocyte apoptosis, which will be benefit for MSC‐exosome therapy of myocarditis in the future.  相似文献   
104.
LIVIN, a member of the inhibitor of apoptosis proteins (IAPs), is reported playing important roles in the development and progression of multiple human cancers. However, its underlined mechanisms in human renal cell carcinoma (RCC) are still needed to be clarified. In the present study, we reported that inhibition of miR-214 promoted the expression of LIVIN, then facilitated RCC cells growth and reduced the sensitivity of RCC cells to chemotherapeutic drugs. In constant, overexpression of miR-214 had contradictory effects. Further investigation showed that miR-214 was down-regulated in RCC because of abnormal methylation. In addition, DNA methyltransferase DNMT1, miR-214 and LIVIN are directly correlated in RCC patients. In conclusion, these results suggest that abnormal miR-214 methylation negatively regulates LIVIN, which may promote RCC cells growth and reduced the sensitivity of RCC cells to chemotherapeutic drugs.  相似文献   
105.
Acute myeloid leukaemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. 4‐Amino‐2‐trifluoromethyl‐phenyl retinate (ATPR), a novel all‐trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show superior anticancer effect compared with ATRA on various cancers. However, its potential effect on AML remains largely unknown. Lactate dehydrogenase B (LDHB) is the key glycolytic enzyme that catalyses the interconversion between pyruvate and lactate. Currently, little is known about the role of LDHB in AML. In this study, we found that ATPR showed antileukaemic effects with RARα dependent in AML cells. LDHB was aberrantly overexpressed in human AML peripheral blood mononuclear cell (PBMC) and AML cell lines. A lentiviral vector expressing LDHB‐targeting shRNA was constructed to generate a stable AML cells with low expression of LDHB. The effect of LDHB knockdown on differentiation and cycle arrest of AML cells was assessed in vitro and vivo, including involvement of Raf/MEK/ERK signalling. Finally, these data suggested that ATPR showed antileukaemic effects by RARα/LDHB/ ERK‐glycolysis signalling axis. Further studies should focus on the underlying leukaemia‐promoting mechanisms and investigate LDHB as a therapeutic target.  相似文献   
106.
Ginseng and the seed of Zizyphus jujuba var. spinosa, which are traditional Chinese medicinal materials, were often used in ancient Chinese recipes as a pair of medicines. They can replenish the primordial qi and tonify the spleen. This study investigated the effects of ginseng and the seed of Zizyphus jujuba var. spinosa (GS) extract on gut microbiota diversity in rats with spleen deficiency syndrome (SDS). A total of 52 compounds (including 16 flavonoids, 35 saponins, and 1 alkaloid) were identified and analyzed from the GS extract by UPLC‐Q‐Orbitrap‐MS/MS. The GS extract significantly increased the relative abundance of Firmicutes and Bacteroidetes in rats with SDS but decreased that of Proteobacteria and Actinobacteria. At the genus level, the GS extract significantly increased the relative abundance of Lactobacillus and Bifidobacterium in rats with SDS but decreased that of Streptococcus, Escherichia‐Shigella, Veillonella, and Enterococcus. In addition, the GS extract influenced glucose and amino acid metabolism. In summary, the results showed that the GS extract changed the structure and diversity of gut microbiota in rats with SDS and balanced the metabolic process.  相似文献   
107.
The traditional Zn/MnO2 battery has attracted great interest due to its low cost, high safety, high output voltage, and environmental friendliness. However, it remains a big challenge to achieve long‐term stability, mainly owing to the poor reversibility of the cathode reaction. Different from previous studies where the cathode redox reaction of MnO2/MnOOH is in solid state with limited reversibility, here a new aqueous rechargeable Zn/MnO2 flow battery is constructed with dissolution–precipitation reactions in both cathodes (Mn2+/MnO2) and anodes (Zn2+/Zn), which allow mixing of anolyte and catholyte into only one electrolyte and remove the requirement for an ion selective membrane for cost reduction. Impressively, this new battery exhibits a high discharge voltage of ≈1.78 V, good rate capability (10C discharge), and excellent cycling stability (1000 cycles without decay) at the areal capacity ranging from 0.5 to 2 mAh cm‐2. More importantly, this battery can be readily enlarged to a bench scale flow cell of 1.2 Ah with good capacity retention of 89.7% at the 500th cycle, displaying great potential for large‐scale energy storage.  相似文献   
108.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   
109.
Solar energy is one of the most abundant renewable energy sources. For efficient utilization of solar energy, photovoltaic technology is regarded as the most important source. However, due to the intermittent and unstable characteristics of solar radiation, photoelectric conversion (PC) devices fail to meet the requirements of continuous power output. With the development of rechargeable electric energy storage systems (ESSs) (e.g., supercapacitors and batteries), the integration of a PC device and a rechargeable ESS has become a promising approach to solving this problem. The so‐called integrated photorechargeable ESSs which can directly store sunlight generated electricity in daylight and reversibly release it at night time, has a huge potential for future applications. This review summarizes the development of several types of mainstream integrated photorechargeable ESSs and introduces different working mechanisms for each photorechargeable ESS in detail. Several general perspectives on challenges and future development in the field are also provided.  相似文献   
110.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号