首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120837篇
  免费   3019篇
  国内免费   2711篇
  126567篇
  2023年   339篇
  2022年   769篇
  2021年   1156篇
  2020年   826篇
  2019年   949篇
  2018年   12577篇
  2017年   11232篇
  2016年   8428篇
  2015年   2182篇
  2014年   2168篇
  2013年   2339篇
  2012年   6567篇
  2011年   14869篇
  2010年   13225篇
  2009年   9314篇
  2008年   11156篇
  2007年   12620篇
  2006年   1449篇
  2005年   1580篇
  2004年   1931篇
  2003年   1865篇
  2002年   1580篇
  2001年   879篇
  2000年   727篇
  1999年   536篇
  1998年   272篇
  1997年   269篇
  1996年   229篇
  1995年   208篇
  1994年   193篇
  1993年   171篇
  1992年   292篇
  1991年   312篇
  1990年   240篇
  1989年   256篇
  1988年   220篇
  1987年   183篇
  1986年   155篇
  1985年   177篇
  1984年   132篇
  1983年   126篇
  1982年   100篇
  1981年   101篇
  1979年   112篇
  1978年   93篇
  1975年   94篇
  1974年   90篇
  1973年   84篇
  1972年   301篇
  1971年   333篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
991.
992.
993.
Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders.  相似文献   
994.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   
995.
996.
Small heat shock proteins (sHSPs), as ubiquitous molecular chaperones found in all forms of life, are known to be able to protect cells against stresses and suppress the aggregation of a variety of model substrate proteins under in vitro conditions. Nevertheless, it is poorly understood what natural substrate proteins are protected by sHSPs in living cells. Here, by using a genetically incorporated photo-cross-linker (p-benzoyl-l-phenylalanine), we identified a total of 95 and 54 natural substrate proteins of IbpB (an sHSP from Escherichia coli) in living cells with and without heat shock, respectively. Functional profiling of these proteins (110 in total) suggests that IbpB, although binding to a wide range of cellular proteins, has a remarkable substrate preference for translation-related proteins (e.g. ribosomal proteins and amino-acyl tRNA synthetases) and moderate preference for metabolic enzymes. Furthermore, these two classes of proteins were found to be more prone to aggregation and/or inactivation in cells lacking IbpB under stress conditions (e.g. heat shock). Together, our in vivo data offer novel insights into the chaperone function of IbpB, or sHSPs in general, and suggest that the preferential protection on the protein synthesis machine and metabolic enzymes may dominantly contribute to the well known protective effect of sHSPs on cell survival against stresses.  相似文献   
997.
Abstract

The deployment of high-altitude vehicles in near space with the purpose of providing Internet, communication, and other services represents the new frontier of aerospace activities. Near-space operations are attracting growing interest due to their mult-purpose nature and their anticipated high profitability. Despite such positive perceptions, near-space plans are, however, hampered by the uncertain international legal status of near space. Using the precedent of the exclusive economic zone (EEZ), this article suggests a new categorization of the near space as the exclusive utilization space (EUS) and a set of rules to manage its utilization.  相似文献   
998.
The ocean is a natural habitat for antibiotic-producing bacteria, and marine aquaculture introduces antibiotics into the ocean to treat infections and improve aquaculture production. Studies have shown that the ocean is an important reservoir of antibiotic resistance genes. However, there is a lack of understanding and knowledge about the clinical importance of the ocean resistome. We investigated the relationship between the ocean bacterial resistome and pathogenic resistome. We applied high-throughput sequencing and metagenomic analyses to explore the resistance genes in bacterial plasmids from marine sediments. Numerous putative resistance determinants were detected among the resistance genes in the sediment bacteria. We also found that several contigs shared high identity with transposons or plasmids from human pathogens, indicating that the sediment bacteria recently contributed or acquired resistance genes from pathogens. Marine sediment bacteria could play an important role in the global exchange of antibiotic resistance.  相似文献   
999.
1000.
Mitogen-activated protein kinase (MAPK) cascades are involved in various processes, including plant growth and development as well as biotic and abiotic stress responses. MAPK kinases (MKKs), which link MPKs and MAPKK kinases (MKKKs), are crucial in MAPK cascades because these kinases mediate various stress responses in plants. However, only few MKKs in Brassica campestris (rape) have been functionally characterized. In this study, a novel gene, MKK4 that belongs to a C MKK group, was isolated and characterized from rape. Bioinformatics analysis revealed that the length of cDNA was 1,317 bp with an open reading frame of 993 bp, which encodes a polypeptide containing 330 amino acids, including a putative signal peptide with 27 amino acid residues and a mature protein with 303 amino acids. The obtained MKK4 exhibited a predicted molecular mass of 36.5 kDa and an isoelectric point of 9.01. Quantitative real-time polymerase chain reaction analysis revealed that MKK4 expression could be induced by cold and salt. We also found that the MKK4 protein is localized in the nucleus. In addition, a 999 bp promoter fragment of MKK4 was cloned. Sequence analysis revealed that several putative regulatory elements were found in the MKK4 promoter. Transient expression assay showed that the MKK4 promoter fragments exhibited promoter activity and stimulated GFP expression. The effects of GFP gene expression at different temperatures and in different onion epidermis culture patterns were compared. Results showed that the MKK4 promoter could respond to low temperature and salt stress. These results suggested that MKK4 is possibly important for the regulation of cold- and salt-stress responses in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号