首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   13篇
  2024年   3篇
  2023年   6篇
  2022年   7篇
  2021年   11篇
  2020年   7篇
  2019年   12篇
  2018年   10篇
  2017年   2篇
  2016年   15篇
  2015年   18篇
  2014年   11篇
  2013年   17篇
  2012年   14篇
  2011年   15篇
  2010年   10篇
  2009年   12篇
  2008年   8篇
  2007年   8篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2001年   1篇
  1999年   5篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
排序方式: 共有225条查询结果,搜索用时 15 毫秒
11.
12.
The interplay between the Apicomplexan parasite Toxoplasma gondii and its host has been largely studied. However, molecular changes at the metabolic level in the host central nervous system and pathogenesis-associated metabolites during brain infection are largely unexplored. We used a global metabolomics strategy to identify differentially regulated metabolites and affected metabolic pathways in BALB/c mice during infection with T. gondii Pru strain at 7, 14 and 21 days post-infection (DPI). The non-targeted Liquid Chromatography-Mass Spectrometry (LC-MS) metabolomics analysis detected approximately 2,755 retention time-exact mass pairs, of which more than 60 had significantly differential profiles at different stages of infection. These include amino acids, organic acids, carbohydrates, fatty acids, and vitamins. The biological significance of these metabolites is discussed. Principal Component Analysis and Orthogonal Partial Least Square-Discriminant Analysis showed the metabolites’ profile to change over time with the most significant changes occurring at 14 DPI. Correlated metabolic pathway imbalances were observed in carbohydrate metabolism, lipid metabolism, energetic metabolism and fatty acid oxidation. Eight metabolites correlated with the physical recovery from infection-caused illness were identified. These findings indicate that global metabolomics adopted in this study is a sensitive approach for detecting metabolic alterations in T. gondii-infected mice and generated a comparative metabolic profile of brain tissue distinguishing infected from non-infected host.  相似文献   
13.
The present study aimed to evaluate the association between the environmental tobacco smoke (ETS) and DNA damage in relation to oxidative stress (OS) in children. Sixty-four children of age 1-8 years, selected from the outpatient clinic of Mansoura University Children Hospital were divided into two groups (23 children/group) based on high (>20 cigarettes/day) or low (<20 cigarettes/day) exposure to ETS at home. Twenty symptom-free children with normal cotinine level and with no exposure to ETS were recruited as controls. The comet assay was used to quantify the level of DNA damage in lymphocytes isolated from all children. Spectrophotometric methods were used to assess the serum level of malondialdehyde (MDA) and activity of glutathione peroxidase (GSH-Px) in erythrocytes. Also, serum level of tocopherol fractions (alpha, gamma, delta) was assessed by high performance liquid chromatography (HPLC). Children exposed to ETS exhibited retarded growth, more chest problems, and gastroenteritis than the control. A significant increase in mean comet tail length indicating DNA damage was observed in ETS-exposed children (P<0.001) compared to controls. ETS-exposed children had significantly (P<0.001) higher MDA level paralleled with significant (P<0.001) decrease in the level of GSH-Px and tocopherol fractions compared with controls. The GSH-Px activity and tocopherol levels were inversely correlated with the increase of ETS exposure. These results show that inhalation of ETS is associated with an increase in the level of oxidants and a simultaneous decrease in the level of antioxidants in the children's blood. This status of oxidant-antioxidant imbalance (OS) may be one of the mechanisms leading to DNA damage detected in lymphocytes of ETS-exposed children. In conclusion, the present study gives an indication of an association between DNA damage and ETS exposure in children.  相似文献   
14.
15.
Microtubule-associated protein 1 (MAP1) light chain 3 (LC3) has proven useful as autophagosomal marker in studies on the interaction between pathogens and the host autophagic machinery. However, the function of LC3 is known to extend above and beyond its role in autophagosome formation. We previously reported that intrinsic LC3 is associated with the intracellular Chlamydia trachomatis inclusion in human epithelial cells. Here we show that LC3, most likely the cytoplasmic nonlipidated form, interacts with the C. trachomatis inclusion as a microtubule-associated protein rather than an autophagosome-associated component. In contrast, N-terminally GFP-tagged LC3 exclusively targets autophagosomes rather than chlamydial inclusions. Immunofluorescence analysis revealed an association of LC3 and MAP1 subunits A and B with the inclusion as early as 18 h post infection. Inclusion-bound LC3 was connected with the microtubular network. Depolymerization of the microtubular architecture disrupted the association of LC3/MAP1s with the inclusion. Furthermore, siRNA-mediated silencing of the MAP1 and LC3 proteins revealed their essential function in the intracellular growth of C. trachomatis. Interestingly, defective autophagy remarkably enhanced chlamydial growth, suggesting a suppressive effect of the autophagic machinery on bacterial development. However, depletion of LC3 in autophagy-deficient cells noticeably reduced chlamydial propagation. Thus, our findings demonstrate a new function for LC3, distinct from autophagy, in intracellular bacterial pathogenesis.  相似文献   
16.
Aeromonas microorganisms normally grow at temperatures between 5 degrees C and 45 degrees C and therefore should have high thermotolerance. Thus it was of interest to find out whether A. hydrophila, A. caviae and A. veronii biovar sobria serovars respond to abrupt temperature changes with a heat shock-like response. To this end the present study was undertaken to determine whether Aeromonas species exhibits a heat shock response to different temperatures and time factors. The response of Aeromonas serovars to 24 h and 48 h of thermal stress at 25 degrees C, 42 degrees C and 50 degrees C involved the synthesis of 12-18 heat shock proteins (HSPs) bands with molecular weights ranging between 83.5-103.9 kDa in the high HSP molecular mass and 14.5-12.0 as low molecular mass HSP. Electrophoretic analysis of the HSPs showed that the serovars do not cluster very tightly and also that they are distinct from each other.  相似文献   
17.
The objectives of the present study were to assess the genetic diversity, phylogeny and phylogeographical relationships of available Sarcocystis neurona isolates from different localities in the United States. All 13 Sarcocystis isolates from different hosts were subjected to polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analyses using two published DNA markers (25/396 and 33/54). The 334 bp sequence of the 25/396 marker of these isolates and Besnoitia darlingi, B. bennetti, Toxoplasma gondii and Neospora caninum were sequenced and compared. Phylogenetic analysis was performed using neighbour-joining (NJ), maximum parsimony (MP) and minimum evolution (ME) methods based on the sequences of the 25/396 marker of the 13 Sarcocystis isolates obtained in this study and sequences of 10 related isolates from GenBank. Phylogenetic trees revealed a close relatedness among S. neurona isolates in the US (nucleotide sequence diversity <5.0%). US isolates formed a monophyletic group and appeared more closely related to each other than to the South American isolates, which formed a separate lineage. NJ and ME trees with Kimura 2-parameter model separated S. neurona into two separate groups: a northern US group and a Southern US group. These findings suggest a correlation between grouping of the isolates and geographical segregation and were consistent with a genetic bottleneck hypothesis during opossum colonisation of North America. These data do not support either the view of S. neurona as a single super-species or its division into multiple subspecies.  相似文献   
18.
19.
The heparan sulfate proteoglycan glypican-1 is essential as a co-receptor for heparin binding growth factors, such as HB-EGF and FGF-2, in pancreatic cancer cells. In the present study, the role of glypican-1 in the regulation of TGF-beta signaling was investigated. Colo-357 pancreatic cancer cells were stably transfected with a full-length glypican-1 antisense construct. Cell growth was determined by MTT and soft agar assays. TGF-beta1 induced p21 expression and Smad2 phosphorylation were analyzed by immunoblotting. PAI-1 promoter activity was determined by luciferase assays. Down-regulation of glypican-1 expression by stable transfection of a full-length glypican-1 antisense construct resulted in decreased anchorage-dependent and -independent cell growth in Colo-357 pancreatic cancer cells and attenuated TGF-beta1 induced cell growth inhibition, Smad2 phosphorylation, and PAI-1 promoter activity. There was, however, no significant difference in TGF-beta1 induced p21 expression and Smad2 nuclear translocation. In conclusion, glypican-1 is required for efficient TGF-beta1 signaling in pancreatic cancer cells.  相似文献   
20.
Sarcocystis neurona has become recognized as the major causative agent of equine protozoal myeloencephalitis (EPM) in the Americas. At least 3 pathogenic species of Sarcocystis, including S. neurona, can be isolated from opossums. Methods are needed to ascertain whether these isolates are viable and capable of causing infections. In this study, the nuclear stain propidium iodide (PI) was used to differentiate between live (viable) and heat-killed (nonviable) S. neurona sporocysts. PI was excluded by live sporocysts but penetrated compromised sporocyst membrane and stained sporozoite nuclei of dead sporocysts. After live and dead sporocysts were mixed at various ratios, the number of unstained sporocysts detected after the staining procedure correlated significantly (r2 = 0.9978) with the expected numbers of live sporocysts. Sporocyst mixtures were also assayed for in vitro excystation and development in tissue cultures. The correlation between the percentage of plaques formed in tissue cultures and the percentage of expected infectious (live) sporocysts in each mixture was r2 = 0.6712. By analysis of variance, no statistically significant difference was measured between the percentage of viable sporocysts and the percentage of infectious sporocysts (P = 0.3902) in each mixture. In addition, there was evidence of a relation between PI impermeability of sporocysts and animal infectivity. These results suggest that the PI dye-exclusion technique can be a useful tool in identifying viability and potential infectivity of S. neurona sporocysts and in differentiating between viable and nonviable sporocysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号