首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   69篇
  国内免费   1篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   9篇
  2017年   6篇
  2016年   9篇
  2015年   18篇
  2014年   23篇
  2013年   23篇
  2012年   30篇
  2011年   25篇
  2010年   27篇
  2009年   26篇
  2008年   23篇
  2007年   35篇
  2006年   24篇
  2005年   29篇
  2004年   25篇
  2003年   25篇
  2002年   21篇
  2001年   15篇
  2000年   18篇
  1999年   15篇
  1998年   10篇
  1997年   6篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1992年   4篇
  1991年   7篇
  1990年   6篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1985年   4篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1977年   4篇
  1975年   7篇
  1974年   3篇
  1973年   6篇
  1969年   3篇
  1968年   4篇
  1967年   6篇
  1965年   2篇
排序方式: 共有595条查询结果,搜索用时 15 毫秒
61.
Why Is Golden Rice Golden (Yellow) Instead of Red?   总被引:6,自引:0,他引:6       下载免费PDF全文
The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of beta-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the transgenic end point and thus that the endogenous pathway must also be acting. By using TaqMan real-time PCR, we show in wild-type rice endosperm the mRNA expression of the relevant carotenoid biosynthetic enzymes encoding phytoene desaturase, zeta-carotene desaturase, carotene cis-trans-isomerase, beta-lycopene cyclase, and beta-carotene hydroxylase; only PSY mRNA was virtually absent. We show that the transgenic phenotype is not due to up-regulation of expression of the endogenous rice pathway in response to the transgenes, as was suggested to be the case in tomato (Lycopersicon esculentum) fruit, where CRTI expression resulted in a similar carotenoid phenomenon. This means that beta-carotene and xanthophyll formation in Golden Rice relies on the activity of constitutively expressed intrinsic rice genes (carotene cis-trans-isomerase, alpha/beta-lycopene cyclase, beta-carotene hydroxylase). PSY needs to be supplemented and the need for the CrtI transgene in Golden Rice is presumably due to insufficient activity of the phytoene desaturase and/or zeta-carotene desaturase enzyme in endosperm. The effect of CRTI expression was also investigated in leaves of transgenic rice and Arabidopsis (Arabidopsis thaliana). Here, again, the mRNA levels of intrinsic carotenogenic enzymes remained unaffected; nevertheless, the carotenoid pattern changed, showing a decrease in lutein, while the beta-carotene-derived xanthophylls increased. This shift correlated with CRTI-expression and is most likely governed at the enzyme level by lycopene-cis-trans-isomerism. Possible implications are discussed.  相似文献   
62.
Spontaneous synchronization of coupled circadian oscillators   总被引:1,自引:0,他引:1       下载免费PDF全文
In mammals, the circadian pacemaker, which controls daily rhythms, is located in the suprachiasmatic nucleus (SCN). Circadian oscillations are generated in individual SCN neurons by a molecular regulatory network. Cells oscillate with periods ranging from 20 to 28 h, but at the tissue level, SCN neurons display significant synchrony, suggesting a robust intercellular coupling in which neurotransmitters are assumed to play a crucial role. We present a dynamical model for the coupling of a population of circadian oscillators in the SCN. The cellular oscillator, a three-variable model, describes the core negative feedback loop of the circadian clock. The coupling mechanism is incorporated through the global level of neurotransmitter concentration. Global coupling is efficient to synchronize a population of 10,000 cells. Synchronized cells can be entrained by a 24-h light-dark cycle. Simulations of the interaction between two populations representing two regions of the SCN show that the driven population can be phase-leading. Experimentally testable predictions are: 1), phases of individual cells are governed by their intrinsic periods; and 2), efficient synchronization is achieved when the average neurotransmitter concentration would dampen individual oscillators. However, due to the global neurotransmitter oscillation, cells are effectively synchronized.  相似文献   
63.
64.
Cross-reactive activation of potentially autoreactive T cells by high-affinity nonself ligands may be important in breaking self-tolerance in autoimmunity. In a mouse transgenic for a cross-reactive TCR, we have previously shown that a hyper-stimulating altered peptide ligand, L144, induced unresponsiveness to the self peptide, proteolipid protein 139-151. In this study, we demonstrate that a superagonist ligand can break T cell tolerance induced by the lower affinity cognate Ag. T cells tolerant to the cognate ligand, Q144, responded to superagonist, L144, by proliferation and the production of mainly IL-4 and IL-10 in vitro. In contrast, T cells that were tolerized to the superagonist were unable to respond to any peptide that cross-reacted with the transgenic TCR. Low-dose immunization with the superagonist L144 was able to break tolerance to the cognate ligand in vivo and resulted in a blunted proliferative response with production of Th2 cytokines.  相似文献   
65.
Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP+ and GSH/GSSG ratios in the cytosol of ΔYHM2 cells as well as an increase in the NADPH/NADP+ ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the ΔYHM2 strain and more so by the ΔYHM2ΔZWF1 strain upon H2O2 exposure, implying that Yhm2p has an antioxidant function.  相似文献   
66.
Agro-ecosystems have recently experienced dramatic losses of biodiversity due to more intensive production methods. In order to increase species diversity, agri-environment schemes provide subsidies to farmers who devote a fraction of their land to ecological compensation areas (ECAs). Several studies have shown that invertebrate biodiversity is actually higher in ECAs than in nearby intensively cultivated farmland. It remains poorly understood, however, to what extent ECAs also favour vertebrates, such as small mammals and their predators, which would contribute to restoring functional food chains within revitalised agricultural matrices. We studied small mammal populations among eight habitat types—including wildflower areas, a specific ECA in Switzerland—and habitat selection (radiotracking) by the Barn Owl Tyto alba, one of their principal predators. Our prediction was that habitats with higher abundances of small mammals would be more visited by foraging Barn Owls during the period of chicks’ provisioning. Small mammal abundance tended to be higher in wildflower areas than in any other habitat type. Barn Owls, however, preferred to forage in cereal fields and grassland. They avoided all types of crops other than cereals, as well as wildflower areas, which suggests that they do not select their hunting habitat primarily with respect to prey density. Instead of prey abundance, prey accessibility may play a more crucial role: wildflower areas have a dense vegetation cover, which may impede access to prey for foraging owls. The exploitation of wildflower areas by the owls might be enhanced by creating open foraging corridors within or around wildflower areas. Wildflower areas managed in that way might contribute to restore functional links in food webs within agro-ecosystems.  相似文献   
67.
To increase the beta-carotene (provitamin A) content and thus the nutritional value of Golden Rice, the optimization of the enzymes employed, phytoene synthase (PSY) and the Erwinia uredovora carotene desaturase (CrtI), must be considered. CrtI was chosen for this study because this bacterial enzyme, unlike phytoene synthase, was expressed at barely detectable levels in the endosperm of the Golden Rice events investigated. The low protein amounts observed may be caused by either weak cauliflower mosaic virus 35S promoter activity in the endosperm or by inappropriate codon usage. The protein level of CrtI was increased to explore its potential for enhancing the flux of metabolites through the pathway. For this purpose, a synthetic CrtI gene with a codon usage matching that of rice storage proteins was generated. Rice plants were transformed to express the synthetic gene under the control of the endosperm-specific glutelin B1 promoter. In addition, transgenic plants expressing the original bacterial gene were generated, but the endosperm-specific glutelin B1 promoter was employed instead of the cauliflower mosaic virus 35S promoter. Independent of codon optimization, the use of the endosperm-specific promoter resulted in a large increase in bacterial desaturase production in the T(1) rice grains. However, this did not lead to a significant increase in the carotenoid content, suggesting that the bacterial enzyme is sufficiently active in rice endosperm even at very low levels and is not rate-limiting. The endosperm-specific expression of CrtI did not affect the carotenoid pattern in the leaves, which was observed upon its constitutive expression. Therefore, tissue-specific expression of CrtI represents the better option.  相似文献   
68.
The killer cell lectin-like receptor G1 (KLRG1) is expressed by NK cells and by T cells. In both humans and mice, KLRG1 identifies Ag-experienced T cells that are impaired in their proliferative capacity but are capable of performing effector functions. In this study, we identified E-cadherin as a ligand for murine KLRG1 by using fluorescently labeled, soluble tetrameric complexes of the extracellular domain of the murine KLRG1 molecule as staining reagents in expression cloning. Ectopic expression of E-cadherin in B16.BL6 target cells did not affect cell-mediated lysis by lymphokine-activated NK cells and by CD8 T cells but inhibited Ag-induced proliferation and induction of cytolytic activity of CD8 T cells. E-cadherin is expressed by normal epithelial cells, Langerhans cells, and keratinocytes and is usually down-regulated on metastatic cancer cells. KLRG1 ligation by E-cadherin in healthy tissue may thus exert an inhibitory effect on primed T cells.  相似文献   
69.
Several genetic insulin-dependent diabetes (Idd) intervals that confer resistance to autoimmune diabetes have been identified in mice and humans, but the mechanisms by which they protect against development of diabetes have not been elucidated. To determine the effect of Idd9 on the function of islet-specific T cells, we established novel BDC-Idd9 mice that harbor BDC2.5 TCR transgenic T cells containing the Idd9 of diabetes-resistant B10 mice. We show that the development and functional responses of islet-specific T cells from BDC-Idd9 mice are not defective compared with those from BDC mice, which contain the Idd9 of diabetes-susceptible NOD mice. Upon transfer, BDC T cells rapidly induced severe insulitis and diabetes in NOD.scid mice, whereas those from BDC-Idd9 mice mediated a milder insulitis and induced diabetes with a significantly delayed onset. BDC and BDC-Idd9 T cells expanded comparably in recipient mice. However, BDC-Idd9 T cells accumulated in splenic periarteriolar lymphatic sheaths, whereas BDC T cells were mainly found in pancreatic lymph nodes and pancreata of recipients, indicating that the transferred T cells differed in their homing. We provide evidence that the migration pattern of transferred BDC and BDC-Idd9 T cells at least partly depends on their differential chemotaxis toward the CCR7 ligand CCL19. Taken together, our data show that the Idd9 locus regulates development of type 1 diabetes by affecting the homing of islet-specific T cells.  相似文献   
70.
The synthesis of a new potent, subtype-selective radioligand [(3)H]-M-MPEP (2-methyl-6-((3-methoxyphenyl)ethynyl)-pyridine) and its in vitro pharmacological characteristics are described. Science Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号