首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   30篇
  2018年   6篇
  2017年   4篇
  2016年   13篇
  2015年   21篇
  2014年   23篇
  2013年   20篇
  2012年   46篇
  2011年   30篇
  2010年   17篇
  2009年   21篇
  2008年   36篇
  2007年   33篇
  2006年   21篇
  2005年   39篇
  2004年   17篇
  2003年   17篇
  2002年   17篇
  2001年   11篇
  2000年   9篇
  1999年   10篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1993年   5篇
  1992年   3篇
  1991年   6篇
  1990年   8篇
  1989年   5篇
  1988年   4篇
  1986年   5篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1964年   2篇
  1961年   1篇
  1960年   1篇
  1933年   1篇
排序方式: 共有507条查询结果,搜索用时 25 毫秒
41.
Tobacco plants grown in vitro were supplied with a mixture of [U-13C6]glucose and unlabelled sucrose via the root system. After 20 days, leaves were harvested and extracted with water. Glucose was isolated from the extract and was analysed by 13C NMR spectroscopy. All 13C signals appeared as complex multiplets due to 13C-13C coupling. The abundance of 21 isotopologous glucose species was determined from the 13C NMR signal integrals by numerical deconvolution using a genetic algorithm. The relative fractions of specific isotopologs in the overall excess of 13C-labelled specimens establish flux contributions via glycolysis/glucogenesis, pentose phosphate pathway, citric acid cycle and Calvin cycle including 13CO2 refixation. The fluxes were modelled and reconstructed in silico by a novel rule-based approach yielding the contributions of circular pathways and the degree of multiple cycling events. The data indicate that the vast majority of the proffered [U-13C6]glucose molecules had been modified by catabolism and subsequent glucogenesis from catabolic fragments, predominantly via passage through the citric acid cycle and the pentose phosphate pathway.  相似文献   
42.
A novel diazocan containing dipeptide mimetic was synthesized via reductive N-N bond cleavage of a pyrazolidino-pyrazolidine using Raney-Ni and evaluated as an ICE inhibitor. This versatile 8-membered ring containing scaffold possesses an N-5 ring nitrogen that was used to explore structure-activity relationships in a cell-based assay measuring inhibition of interleukin-1beta.  相似文献   
43.
We aimed to validate an analytical approach based on proteomics on gastric cancer specimens for the identification of new putative diagnostic or prognostic markers. Primary screening was performed on gastrectomy specimens obtained from ten consecutive patients with gastric cancer. Gastric epithelial cells were obtained with an epithelial cell enrichment technique, homogenized and then separated by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The differential protein expression pattern was verified stepwise by Western blotting and immunohistochemistry on samples from 28 and 46 cancer patients, respectively. The putative clinical applicability and prognostic use were tested by an enzyme-linked immunoabsorbent assay on serum samples obtained from 149 cancer patients. One hundred-ninety-one differentially expressed protein spots were found by 2-D PAGE and identified by mass spectrometry, including cathepsin B, which was over-expressed in six (60%) patients. Western blotting confirmed that the active form of cathepsin B is over-expressed, while immunohistochemistry showed strong cytoplasmic staining in cancer tissues of 45 (98%) patients. The serum level of cathepsin B was increased in patients with gastric cancer compared to healthy controls (P = 0.0026) and correlated with T-category and the presence of distant metastases (P < 0.05). Serum levels above 129 pmol x L(-1) were associated with a reduced survival rate (P = 0.0297). Proteome analysis is a valuable tool for the identification of prognostic markers in gastric cancer: Increased cathepsin B serum levels are associated with advanced tumor stages and progressive disease, which enables the classification of some gastric cancer patients into a subgroup that should undergo aggressive therapy.  相似文献   
44.
We have previously shown that Actinobacillus actinomycetemcomitans produces an immunosuppressive factor encoded by the cytolethal distending toxin (cdt)B gene. In this study, we used rCdt peptides to study the contribution of each subunit to toxin activity. As previously reported, CdtB is the only Cdt subunit that is capable of inducing cell cycle arrest by itself. Although CdtA and CdtC do not exhibit activity alone, each subunit is able to significantly enhance the ability of CdtB to induce G2 arrest in Jurkat cells; these effects were dependent upon protein concentration. Moreover, the combined addition of both CdtA and CdtC increased the ED50 for CdtB >7000-fold. In another series of experiments, we demonstrate that the three Cdt peptides are able to form a functional toxin unit on the cell surface. However, these interactions first require that a complex forms between the CdtA and CdtC subunits, indicating that these peptides are required for interaction between the cell and the holotoxin. This conclusion is further supported by experiments in which both Jurkat cells and normal human lymphocytes were protected from Cdt holotoxin-induced G2 arrest by pre-exposure to CdtA and CdtC. Finally, we have used optical biosensor technology to show that CdtA and CdtC have a strong affinity for one another (10(-7) M). Furthermore, although CdtB is unable to bind to either CdtA or CdtC alone, it is capable of forming a stable complex with CdtA/CdtC. The implications of our results with respect to the function and structure of the Cdt holotoxin are discussed.  相似文献   
45.
Dendritic cells (DC) initiate immunity and maintain tolerance. Although in vitro-generated DC, usually derived from peripheral blood monocytes (MO-DC), serve as prototype DC to analyze the biology and biochemistry of DC, phenotypically distinct primary types of DC, including CD1c-DC, are present in peripheral blood (PB-DC). The composition of lysosomal proteases in PB-DC and the way their MHC class II-associated Ag-processing machinery handles a clinically relevant Ag are unknown. We show that CD1c-DC lack significant amounts of active cathepsins (Cat) S, L, and B as well as the asparagine-specific endopeptidase, the major enzymes believed to mediate MHC class II-associated Ag processing. However, at a functional level, lysosomal extracts from CD1c-DC processed the multiple sclerosis-associated autoantigens myelin basic protein and myelin oligodendrocyte glycoprotein in vitro more effectively than MO-DC. Although processing was dominated by CatS, CatD, and asparagine-specific endopeptidase in MO-DC, it was dominated by CatG in CD1c-DC. Thus, human MO-DC and PB-DC significantly differ with respect to their repertoire of active endocytic proteases, so that both proteolytic machineries process a given autoantigen via different proteolytic pathways.  相似文献   
46.
N-terminal pyroglutamate (pGlu) formation from glutaminyl precursors is a posttranslational event in the processing of bioactive neuropeptides such as thyrotropin-releasing hormone and neurotensin during their maturation in the secretory pathway. The reaction is facilitated by glutaminyl cyclase (QC), an enzyme highly abundant in mammalian brain. Here, we describe for the first time that human and papaya QC also catalyze N-terminal glutamate cyclization. Surprisingly, the enzymatic Glu(1) conversion is favored at pH 6.0 while Gln(1) conversion occurs with an optimum at pH 8.0. This unexpected finding might be of importance for deciphering the events leading to deposition of highly toxic pyroglutamyl peptides in amyloidotic diseases.  相似文献   
47.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP; also known as gastric inhibitory polypeptide) are incretin hormones that reduce postprandial glycemic excursions via enhancing insulin release but are rapidly inactivated by enzymatic N-terminal truncation. As such, efforts have been made to improve their plasma stability by synthetic modification or by inhibition of the responsible protease, dipeptidyl peptidase (DP) IV. Here we report a parallel comparison of synthetic GIP and GLP-1 with their Ser2- and Ser(P)2-substituted analogs, examining receptor binding and activation, metabolic stability, and biological effects in vivo. Both incretins and their Ser2-substituted analogs showed similar EC50s (0.16-0.52 nm) and IC50s (4.3-8.1 nm) at their respective cloned receptors. Although both phosphoserine 2-modified (Ser(PO3H2); Ser(P)) peptides were able to stimulate maximal cAMP production and fully displace receptor-bound tracer, they showed significantly right-shifted concentration-response curves and binding affinities. Ser2-substituted analogs were moderately resistant to DP IV cleavage, whereas [Ser(P)2]GIP and [Ser(P)2] GLP-1 showed complete resistance to purified DP IV. It was shown that the Ser(P) forms were dephosphorylated in serum and thus in vivo act as precursor forms of Ser2-substituted analogs. When injected subcutaneously into conscious Wistar rats, all peptides reduced glycemic excursions (rank potency: [Ser(P)2]incretins > or = [Ser2] incretins > native hormones). Insulin determinations indicated that the reductions in postprandial glycemia were at least in part insulin-mediated. Thus it has been shown that despite having low in vitro bioactivity using receptor-transfected cells, in vivo potency of [Ser(P)2] incretins was comparable with or greater than that of native or [Ser2]peptides. Hence, Ser(P)2-modified incretins present as novel glucose-lowering agents.  相似文献   
48.
The potential iron siderophore transporter genes have been determined from the genome sequence of Streptomyces coelicolor A3(2). One of these gene clusters, cdtABC, was disrupted and characterized to determine its role in the uptake of the siderophores produced by S. coelicolor. Resistance to the siderophore-like antibiotics, salmycin and albomycin, was tested in the parent and cdtABC mutant, showing that the parent, but not the mutant, was sensitive to salmycin, while both were resistant to albomycin. Ferrioxamine competition assays against salmycin suggest that the uptake of salmycin is via a ferrioxamine transport system. However, Fe-55 ferrioxamine B uptake experiments did not reveal any difference between the parent and mutant. This suggests that CdtABC specifically transports salmycin, while ferrioxamine uptake maybe substituted by another transport system.  相似文献   
49.
CAFE: a computational tool for the study of gene family evolution   总被引:2,自引:0,他引:2  
SUMMARY: We present CAFE (Computational Analysis of gene Family Evolution), a tool for the statistical analysis of the evolution of the size of gene families. It uses a stochastic birth and death process to model the evolution of gene family sizes over a phylogeny. For a specified phylogenetic tree, and given the gene family sizes in the extant species, CAFE can estimate the global birth and death rate of gene families, infer the most likely gene family size at all internal nodes, identify gene families that have accelerated rates of gain and loss (quantified by a p-value) and identify which branches cause the p-value to be small for significant families. AVAILABILITY: Software is available from http://www.bio.indiana.edu/~hahnlab/Software.html  相似文献   
50.
Pyroglutamate (pGlu)-modified amyloid peptides have been identified in sporadic and familial forms of Alzheimer's disease (AD) and the inherited disorders familial British and Danish Dementia (FBD and FDD). In this study, we characterized the aggregation of amyloid-β protein Aβ37, Aβ38, Aβ40, Aβ42 and ADan species in vitro, which were modified by N-terminal pGlu (pGlu-Aβ3-x, pGlu-ADan) or possess the intact N-terminus (Aβ1-x, ADan). The pGlu-modification confers rapid formation of oligomers and short fibrillar aggregates. In accordance with these observations, the pGlu-modified Aβ38, Αβ40 and Αβ42 species inhibit hippocampal long term potentiation of synaptic response, but pGlu-Aβ3-42 showing the highest effect. Among the unmodified Aβ peptides, only Aβ1-42 exhibites such propensity, which was similar to pGlu-Aβ3-38 and pGlu-Aβ3-40. Likewise, the amyloidogenic peptide pGlu-ADan impaired synaptic potentiation more pronounced than N-terminal unmodified ADan. The results were validated using conditioned media from cultivated HEK293 cells, which express APP variants favoring the formation of Aβ1-x, Aβ3-x or N-truncated pGlu-Aβ3-x species. Hence, we show that the ability of different amyloid peptides to impair synaptic function apparently correlates to their potential to form oligomers as a common mechanism. The pGlu-modification is apparently mediating a higher surface hydrophobicity, as shown by 1-anilinonaphtalene-8-sulfonate fluorescence, which enforces potential to interfere with neuronal physiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号