首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   71篇
  2023年   5篇
  2022年   6篇
  2021年   14篇
  2020年   3篇
  2019年   6篇
  2018年   10篇
  2017年   10篇
  2016年   27篇
  2015年   40篇
  2014年   64篇
  2013年   63篇
  2012年   92篇
  2011年   119篇
  2010年   103篇
  2009年   59篇
  2008年   60篇
  2007年   63篇
  2006年   68篇
  2005年   56篇
  2004年   45篇
  2003年   41篇
  2002年   44篇
  2001年   10篇
  2000年   12篇
  1999年   22篇
  1998年   20篇
  1997年   11篇
  1996年   14篇
  1995年   19篇
  1994年   18篇
  1993年   8篇
  1992年   9篇
  1991年   8篇
  1990年   9篇
  1989年   8篇
  1988年   12篇
  1987年   5篇
  1986年   7篇
  1985年   9篇
  1984年   13篇
  1983年   8篇
  1982年   11篇
  1981年   10篇
  1980年   5篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1974年   3篇
  1971年   4篇
  1969年   2篇
排序方式: 共有1277条查询结果,搜索用时 15 毫秒
101.
102.
103.
Formin proteins are nucleators of actin filaments and regulators of the microtubule cytoskeleton. As such, they play important roles in the development of yeast and other fungi. We show here that AgBnr2, a homologue of the ScBnr1 formin from the filamentous fungus Ashbya gossypii, localizes to the spindle pole body (SPB), the fungal analogue of the centrosome of metazoans. This protein plays an important role in the development of the typical needle-shaped spores of A. gossypii, as suggested by several findings. First, downregulation of AgBNR2 causes defects in sporangium formation and a decrease in the total spore number. Second, a fusion of AgBNR2 to GFP that is driven by the native AgBNR2 promoter is only visible in sporangia. Third, AgBnr2 interacts with a AgSpo21, a sporulation-specific component of the SPB. Furthermore, we provide evidence that AgBnr2 might nucleate actin cables, which are connected to SPBs during sporulation. Our findings add to our understanding of fungal sporulation, particularly the formation of spores with a complex, elongated morphology, and provide novel insights into formin function.  相似文献   
104.
Barley (Hordeum vulgare) is an important cereal crop grown for both the feed and malting industries. Hence, there is great interest to gain deeper insight into the determinants of grain nutritional quality in order to improve the assessment of new traits. Two-dimensional gel electrophoresis was employed for the characterization of the grain proteome of doubled-haploid introgression lines (IL) representing a wild barley genome (Hordeum spontaneum Hs213) within a modern cultivar background (H. vulgare cv. Brenda). Proteome maps were subjected to differential cluster analysis and revealed ILs with similar or different protein expression patterns compared to the Brenda parent. A total of 51 quantitative trait loci for protein expression (pQTL) were detected, and proteins underlying these pQTL were further examined by mass spectrometry. Identification was successful for 49 of the segregating spots and functional annotation of proteins revealed that most proteins are involved in metabolism and disease/defence-related processes. Among those, multigene families of glyceraldehyde-3-phosphate dehydrogenases, heat shock proteins, peroxidases, and serpins were identified. Overall, eight pQTL signals were discovered in two independently grown sets of plants. The mapped spots included protein disulfide isomerase, α-amylase inhibitor BDAI, NADP malic enzyme, adenosine kinase and peroxidase BP1. Specific marker information of proteins involved in developmental events and protein storage as well as in disease- and defence-related processes now allows for targeted breeding approaches to improve the grain quality in barley.  相似文献   
105.
Studying the neural basis of walking behavior, one often faces the problem that it is hard to separate the neuronally produced stepping output from those leg movements that result from passive forces and interactions with other legs through the common contact with the substrate. If we want to understand, which part of a given movement is produced by nervous system motor output, kinematic analysis of stepping movements, therefore, needs to be complemented with electrophysiological recordings of motor activity. The recording of neuronal or muscular activity in a behaving animal is often limited by the electrophysiological equipment which can constrain the animal in its ability to move with as many degrees of freedom as possible. This can either be avoided by using implantable electrodes and then having the animal move on a long tether (i.e. Clarac et al., 1987; Duch & Pflüger, 1995; Böhm et al., 1997; Gruhn & Rathmayer, 2002) or by transmitting the data using telemetric devices (Kutsch et al, 1993; Fischer et al., 1996; Tsuchida et al. 2004; Hama et al., 2007; Wang et al., 2008). Both of these elegant methods, which are successfully used in larger arthropods, often prove difficult to apply in smaller walking insects which either easily get entangled in the long tether or are hindered by the weight of the telemetric device and its batteries. In addition, in all these cases, it is still impossible to distinguish between the purely neuronal basis of locomotion and the effects exerted by mechanical coupling between the walking legs through the substrate. One solution for this problem is to conduct the experiments in a tethered animal that is free to walk in place and that is locally suspended, for example over a slippery surface, which effectively removes most ground contact mechanics. This has been used to study escape responses (Camhi and Nolen, 1981; Camhi and Levy, 1988), turning (Tryba and Ritzman, 2000a,b; Gruhn et al., 2009a), backward walking (Graham and Epstein, 1985) or changes in velocity (Gruhn et al., 2009b) and it allows the experimenter easily to combine intra- and extracellular physiology with kinematic analyses (Gruhn et al., 2006).We use a slippery surface setup to investigate the timing of leg muscles in the behaving stick insect with respect to touch-down and lift-off under different behavioral paradigms such as straight forward and curved walking in intact and reduced preparations.  相似文献   
106.
Chromohalobacter salexigens is one of nine currently known species of the genus Chromohalobacter in the family Halomonadaceae. It is the most halotolerant of the so-called 'moderately halophilic bacteria' currently known and, due to its strong euryhaline phenotype, it is an established model organism for prokaryotic osmoadaptation. C. salexigens strain 1H11(T) and Halomonas elongata are the first and the second members of the family Halomonadaceae with a completely sequenced genome. The 3,696,649 bp long chromosome with a total of 3,319 protein-coding and 93 RNA genes was sequenced as part of the DOE Joint Genome Institute Program DOEM 2004.  相似文献   
107.
The family Hyphomonadaceae within the Alphaproteobacteria is largely comprised of bacteria isolated from marine environments with striking morphologies and an unusual mode of cell growth. Here, we report the complete genome sequence Hirschia baltica, which is only the second a member of the Hyphomonadaceae with a published genome sequence. H. baltica is of special interest because it has a dimorphic life cycle and is a stalked, budding bacterium. The 3,455,622 bp long chromosome and 84,492 bp plasmid with a total of 3,222 protein-coding and 44 RNA genes were sequenced as part of the DOE Joint Genome Institute Program CSP 2008.  相似文献   
108.
Bacteroides helcogenes Benno et al. 1983 is of interest because of its isolated phylogenetic location and, although it has been found in pig feces and is known to be pathogenic for pigs, occurrence of this bacterium is rare and it does not cause significant damage in intensive animal husbandry. The genome of B. helcogenes P 36-108(T) is already the fifth completed and published type strain genome from the genus Bacteroides in the family Bacteroidaceae. The 3,998,906 bp long genome with its 3,353 protein-coding and 83 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
109.
Thermomonospora curvata Henssen 1957 is the type species of the genus Thermomonospora. This genus is of interest because members of this clade are sources of new antibiotics, enzymes, and products with pharmacological activity. In addition, members of this genus participate in the active degradation of cellulose. This is the first complete genome sequence of a member of the family Thermomonosporaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,639,016 bp long genome with its 4,985 protein-coding and 76 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
110.
Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydrogenobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6(T) is of interest because of the unusually efficient hydrogen-oxidizing ability of this strain, which results in a faster generation time compared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO(2)via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain derived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号