首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1520篇
  免费   110篇
  2023年   7篇
  2022年   11篇
  2021年   15篇
  2019年   15篇
  2018年   21篇
  2017年   20篇
  2016年   42篇
  2015年   45篇
  2014年   72篇
  2013年   76篇
  2012年   108篇
  2011年   127篇
  2010年   108篇
  2009年   77篇
  2008年   75篇
  2007年   79篇
  2006年   77篇
  2005年   64篇
  2004年   53篇
  2003年   52篇
  2002年   53篇
  2001年   18篇
  2000年   24篇
  1999年   23篇
  1998年   19篇
  1997年   17篇
  1996年   16篇
  1995年   20篇
  1994年   17篇
  1993年   8篇
  1992年   16篇
  1991年   14篇
  1990年   12篇
  1989年   14篇
  1988年   16篇
  1987年   11篇
  1986年   7篇
  1985年   11篇
  1984年   15篇
  1983年   14篇
  1982年   15篇
  1981年   12篇
  1980年   11篇
  1979年   12篇
  1978年   9篇
  1976年   7篇
  1974年   11篇
  1971年   7篇
  1969年   6篇
  1968年   10篇
排序方式: 共有1630条查询结果,搜索用时 15 毫秒
131.
Bacteroides helcogenes Benno et al. 1983 is of interest because of its isolated phylogenetic location and, although it has been found in pig feces and is known to be pathogenic for pigs, occurrence of this bacterium is rare and it does not cause significant damage in intensive animal husbandry. The genome of B. helcogenes P 36-108(T) is already the fifth completed and published type strain genome from the genus Bacteroides in the family Bacteroidaceae. The 3,998,906 bp long genome with its 3,353 protein-coding and 83 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
132.
Thermomonospora curvata Henssen 1957 is the type species of the genus Thermomonospora. This genus is of interest because members of this clade are sources of new antibiotics, enzymes, and products with pharmacological activity. In addition, members of this genus participate in the active degradation of cellulose. This is the first complete genome sequence of a member of the family Thermomonosporaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 5,639,016 bp long genome with its 4,985 protein-coding and 76 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
133.
Hydrogenobacter thermophilus Kawasumi et al. 1984 is the type species of the genus Hydrogenobacter. H. thermophilus was the first obligate autotrophic organism reported among aerobic hydrogen-oxidizing bacteria. Strain TK-6(T) is of interest because of the unusually efficient hydrogen-oxidizing ability of this strain, which results in a faster generation time compared to other autotrophs. It is also able to grow anaerobically using nitrate as an electron acceptor when molecular hydrogen is used as the energy source, and able to aerobically fix CO(2)via the reductive tricarboxylic acid cycle. This is the fifth completed genome sequence in the family Aquificaceae, and the second genome sequence determined from a strain derived from the original isolate. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,742,932 bp long genome with its 1,899 protein-coding and 49 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
134.
Mahella australiensis Bonilla Salinas et al. 2004 is the type species of the genus Mahella, which belongs to the family Thermoanaerobacteraceae. The species is of interest because it differs from other known anaerobic spore-forming bacteria in its G+C content, and in certain phenotypic traits, such as carbon source utilization and relationship to temperature. Moreover, it has been discussed that this species might be an indigenous member of petroleum and oil reservoirs. This is the first completed genome sequence of a member of the genus Mahella and the ninth completed type strain genome sequence from the family Thermoanaerobacteraceae. The 3,135,972 bp long genome with its 2,974 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
135.
Prevotella multisaccharivorax Sakamoto et al. 2005 is a species of the large genus Prevotella, which belongs to the family Prevotellaceae. The species is of medical interest because its members are able to cause diseases in the human oral cavity such as periodontitis, root caries and others. Although 77 Prevotella genomes have already been sequenced or are targeted for sequencing, this is only the second completed genome sequence of a type strain of a species within the genus Prevotella to be published. The 3,388,644 bp long genome is assembled in three non-contiguous contigs, harbors 2,876 protein-coding and 75 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
136.
Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.  相似文献   
137.
Hippea maritima (Miroshnichenko et al. 1999) is the type species of the genus Hippea, which belongs to the family Desulfurellaceae within the class Deltaproteobacteria. The anaerobic, moderately thermophilic marine sulfur-reducer was first isolated from shallow-water hot vents in Matipur Harbor, Papua New Guinea. H. maritima was of interest for genome sequencing because of its isolated phylogenetic location, as a distant next neighbor of the genus Desulfurella. Strain MH(2) (T) is the first type strain from the order Desulfurellales with a completely sequenced genome. The 1,694,430 bp long linear genome with its 1,723 protein-coding and 57 RNA genes consists of one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
138.
139.
Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
140.
We estimated neutral diversity of 21 European cattle breeds with 105 microsatellites. Nine of them resembled unselected Balkan Buša strains with diffuse breeding barriers and the 12 others were strongly differentiated, isolated breeds. Because of the impact of neutral genetic diversity on long-term population adaptive capacity, we discuss the long-term outcome of different conservation priorities in a subdivided metapopulation of the investigated cattle breeds. The optimal contribution to a pool of total genetic diversity allocated more than 95% of long-term relevant neutral diversity to virtually unselected strains of the Balkan Buša, while the maximization of total variance preferred inbred breeds. Current artificial selection methods, such as genomic selection sped up and a recovery of underestimated traits becomes quickly impossible. We emphasize that currently neutral and even deleterious alleles might be required for future genotypes in sustainable and efficient livestock breeding and production systems of a 21st century. We provide cumulative evidences that long-term survival relies on genetic complexity and complexity relies on allelic diversity. Our results suggest that virtually unselected, nonuniform strains harbor a crucial proportion of neutral diversity and should be conserved with high global priority. As one example, we suggest a cooperative maintenance of the nondifferentiated, highly fragmented, and fast vanishing metapopulation of Balkan Buša.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号