首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   12篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   14篇
  2012年   5篇
  2011年   11篇
  2010年   7篇
  2009年   4篇
  2008年   11篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1992年   1篇
  1982年   1篇
  1978年   1篇
  1967年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
11.
Haemophilia is caused by hundreds of different mutations and manifests itself in clinical conditions of varying severity. Despite being inherited in monogenic form, the clinical features of haemophilia can be influenced by other genetic factors, thereby confounding the boundary between monogenic and multifactorial disease. Unlike sufferers of other genetic diseases, haemophiliacs can be treated successfully by intravenous substitution of coagulation factors. Haemophilia is also the most attractive model for developing gene-therapy protocols, as the normal life expectancy of haemophiliacs allows the side effects of gene therapy, as well as its efficiency, to be monitored over long periods.  相似文献   
12.
A series of novel small molecules with a 1,2,4-triazine scaffold was obtained according to a recently published and highly efficient synthetic route. Screening for antiproliferative and cytotoxic activity revealed distinct anticancer effects against the human leukemia cell line K-562 combined with a remarkable low cytotoxicity. All compounds were in agreement with the ‘rule-of-five’ claims by Lipinski and calculated log Pcalc values were experimentally confirmed (log Pexp). For the most active compounds, in vitro serum albumin binding was investigated and structure–activity relationships were established.  相似文献   
13.
The microbial communities of in situ reactor columns degrading benzene with sulfate as an electron acceptor were analyzed based on clone libraries and terminal restriction fragment length polymorphism fingerprinting of PCR-amplified 16S rRNA genes. The columns were filled with either lava granules or sand particles and percolated with groundwater from a benzene-contaminated aquifer. The predominant organisms colonizing the lava granules were related to Magnetobacterium sp., followed by a phylotype affiliated to the genera Cryptanaerobacter/Pelotomaculum and several Deltaproteobacteria. From the sand-filled columns, a stable benzene-degrading consortium was established in sand-filled laboratory microcosms under sulfate-reducing conditions. It was composed of Delta- and Epsilonproteobacteria, Clostridia, Chloroflexi, Actinobacteria and Bacteroidetes. The most prominent phylotype of the consortium was related to the genus Sulfurovum, followed by Desulfovibrio sp. and the Cryptanaerobacter/Pelotomaculum phylotype. The proportion of the latter was similar in both communities and significantly increased after repeated benzene-spiking. During cultivation on aromatic substrates other than benzene, the Cryptanaerobacter/Pelotomaculum phylotype was outcompeted by other community members. Hence, this organism appears to be specific for benzene as a growth substrate and might play a key role in benzene degradation in both communities. Based on the possible functions of the community members and thermodynamic calculations, a functional model for syntrophic benzene degradation under sulfate-reducing conditions is proposed.  相似文献   
14.
The art of cellular communication: tunneling nanotubes bridge the divide   总被引:1,自引:0,他引:1  
The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes.  相似文献   
15.
Intercellular transfer mediated by tunneling nanotubes   总被引:2,自引:0,他引:2  
Animal cells have evolved different mechanisms to communicate with one another. In 2004, a new route of cell-to-cell communication mediated by tunneling nanotubes (TNT) was reported. These membranous cell bridges form de novo between cells and mediate the intercellular transfer of organelles, plasma membrane components and cytoplasmic molecules. The characterization of TNT-like bridges from several cell types revealed variations in the cytoskeletal composition as well as in the modality by which they interconnect cells, suggesting that different subclasses may exist. Furthermore, the growing number of cell types for which TNT-like structures were detected, supports the view that they represent a general mechanism for functional connectivity between cells, which could have important implications under physiological conditions.  相似文献   
16.
Information on the structure of the population of Phomopsis species in Ukraine, that describes the structure of Phomopsis spp. cultivated on medium: the morfological characteristics, properties of pathogenicity and phytotoxicity. It is described the method of evaluation and selection of unsusceptible forms of sunflower to phomopsis. It includes the optimal infection level, the forms of an inoculum that is effective and optimal way for artificial infection.  相似文献   
17.
Biogeochemical processes and ecosystemic functions are mostly driven by soil microbial communities. However, most methods focus on evaluating the total microbial community and fail to discriminate its active fraction which is linked to soil functionality. Precisely, the activity of the microbial community is strongly limited by the availability of organic carbon (C) in soils under arid and semi‐arid climate. Here, we provide a complementary genomic and metaproteomic approach to investigate the relationships between the diversity of the total community, the active diversity and ecosystem functionality across a dissolved organic carbon (DOC) gradient in southeast Spain. DOC correlated with the ecosystem multifunctionality index composed by soil respiration, enzyme activities (urease, alkaline phosphatase and β‐glucosidase) and microbial biomass (phospholipid fatty acids, PLFA). This study highlights that the active diversity (determined by metaprotoemics) but not the diversity of the whole microbial community (evaluated by amplicon gene sequencing) is related to the availability of organic C and it is also connected to the ecosystem multifunctionality index. We reveal that DOC shapes the activities of bacterial and fungal populations in Mediterranean semi‐arid soils and determines the compartmentalization of functional niches. For instance, Rhizobales thrived at high‐DOC sites probably fuelled by metabolism of one‐C compounds. Moreover, the analysis of proteins involved in the transport and metabolism of carbohydrates revealed that Ascomycota and Basidiomycota occupied different nutritional niches. The functional mechanisms for niche specialization were not constant across the DOC gradient.  相似文献   
18.
Carbon partitioning and residue formation during microbial degradation of polycyclic aromatic hydrocarbons (PAH) in soil and soil-compost mixtures were examined by using [14C]anthracenes labeled at different positions. In native soil 43.8% of [9-14C]anthracene was mineralized by the autochthonous microflora and 45.4% was transformed into bound residues within 176 days. Addition of compost increased the metabolism (67.2% of the anthracene was mineralized) and decreased the residue formation (20.7% of the anthracene was transformed). Thus, the higher organic carbon content after compost was added did not increase the level of residue formation. [14C]anthracene labeled at position 1,2,3,4,4a,5a was metabolized more rapidly and resulted in formation of higher levels of residues (28.5%) by the soil-compost mixture than [14C]anthracene radiolabeled at position C-9 (20.7%). Two phases of residue formation were observed in the experiments. In the first phase the original compound was sequestered in the soil, as indicated by its limited extractability. In the second phase metabolites were incorporated into humic substances after microbial degradation of the PAH (biogenic residue formation). PAH metabolites undergo oxidative coupling to phenolic compounds to form nonhydrolyzable humic substance-like macromolecules. We found indications that monomeric educts are coupled by C-C- or either bonds. Hydrolyzable ester bonds or sorption of the parent compounds plays a minor role in residue formation. Moreover, experiments performed with 14CO2 revealed that residues may arise from CO2 in the soil in amounts typical for anthracene biodegradation. The extent of residue formation depends on the metabolic capacity of the soil microflora and the characteristics of the soil. The position of the 14C label is another important factor which controls mineralization and residue formation from metabolized compounds.  相似文献   
19.
20.
The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are crucial. Thus, the electron acceptors ferrihydrite, manganese dioxide, nitrate or sulfate were added to sediment microcosms acquired from two brackish water locations. Hexadecane, ethylbenzene or 1-(13)C-naphthalene were used as model hydrocarbons. Methane was released most rapidly from incubations amended with ferrihydrite and hexadecane. Ferrihydrite enhanced only hexadecane-dependent methanogenesis. The rates of methanogenesis were negatively affected by sulfate and nitrate at concentrations of more than 5 and 1 mM, respectively. Metal-reducing Geobacteraceae and potential sulfate reducers as well as Methanosarcina were present in situ and in vitro. Ferrihydrite addition triggered the growth of Methanosarcina-related methanogens. Additionally, methane was removed concomitantly by anaerobic methanotrophy. ANME-1 and -2 methyl coenzyme M reductase genes were detected, indicating anaerobic methanotrophy as an accompanying process [Correction added 16 December after online publication: 'methyl coenzyme A' changed to 'methyl coenzyme M' in this sentence]. The experiments presented here demonstrate the feasibility of enhancing methanogenic alkane degradation by ferrihydrite or sulfate addition in different geological settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号