首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14408篇
  免费   1113篇
  国内免费   8篇
  2021年   149篇
  2020年   109篇
  2019年   150篇
  2018年   168篇
  2017年   177篇
  2016年   254篇
  2015年   445篇
  2014年   440篇
  2013年   647篇
  2012年   790篇
  2011年   720篇
  2010年   512篇
  2009年   436篇
  2008年   621篇
  2007年   630篇
  2006年   617篇
  2005年   615篇
  2004年   617篇
  2003年   633篇
  2002年   630篇
  2001年   195篇
  2000年   164篇
  1999年   198篇
  1998年   199篇
  1997年   184篇
  1996年   172篇
  1995年   175篇
  1994年   149篇
  1993年   179篇
  1992年   161篇
  1991年   186篇
  1990年   160篇
  1989年   147篇
  1988年   152篇
  1987年   146篇
  1986年   120篇
  1985年   136篇
  1984年   197篇
  1983年   174篇
  1982年   161篇
  1981年   171篇
  1980年   144篇
  1979年   135篇
  1978年   150篇
  1977年   121篇
  1976年   107篇
  1975年   125篇
  1974年   105篇
  1973年   92篇
  1970年   70篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Sphingosine 1-phosphate (S1P) is the ligand for a family of specific G protein-coupled receptors (GPCRs) that regulate a wide variety of important cellular functions, including growth, survival, cytoskeletal rearrangements, and cell motility. However, whether it also has an intracellular function is still a matter of great debate. Overexpression of sphingosine kinase type 1, which generated S1P, induced extensive stress fibers and impaired formation of the Src-focal adhesion kinase signaling complex, with consequent aberrant focal adhesion turnover, leading to inhibition of cell locomotion. We have dissected biological responses dependent on intracellular S1P from those that are receptor-mediated by specifically blocking signaling of Galphaq, Galphai, Galpha12/13, and Gbetagamma subunits, the G proteins that S1P receptors (S1PRs) couple to and signal through. We found that intracellular S1P signaled "inside out" through its cell-surface receptors linked to G12/13-mediated stress fiber formation, important for cell motility. Remarkably, cell growth stimulation and suppression of apoptosis by endogenous S1P were independent of GPCRs and inside-out signaling. Using fibroblasts from embryonic mice devoid of functional S1PRs, we also demonstrated that, in contrast to exogenous S1P, intracellular S1P formed by overexpression of sphingosine kinase type 1 promoted growth and survival independent of its GPCRs. Hence, exogenous and intracellularly generated S1Ps affect cell growth and survival by divergent pathways. Our results demonstrate a receptor-independent intracellular function of S1P, reminiscent of its action in yeast cells that lack S1PRs.  相似文献   
992.
GPCR135, publicly known as somatostatin- and angiotensin-like peptide receptor, is expressed in the central nervous system and its cognate ligand(s) has not been identified. We have found that both rat and porcine brain extracts stimulated 35S-labeled guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) incorporation in cells over-expressing GPCR135. Multiple rounds of extraction, purification, followed by N-terminal sequence analysis of the ligand from porcine brain revealed that the ligand is a product of the recently identified gene, relaxin-3 (aka insulin-7 or INSL7). Recombinant human relaxin-3 potently stimulates GTPgammaS binding and inhibits cAMP accumulation in GPCR135 overexpressing cells with EC50 values of 0.25 and 0.35 nM, respectively. 125I-Relaxin-3 binds GPCR135 at high affinity with a Kd value of 0.31 nM. Relaxin-3 is the only member of the insulin/relaxin superfamily that can activate GPCR135. In situ hybridization showed that relaxin-3 mRNA is predominantly expressed in the dorsomedial ventral tegmental nucleus of the brainstem (aka nucleus incertus), as well as in discrete cells in the lateral periaqueductal gray and in the central gray nucleus. GPCR135 is expressed abundantly in the hypothalamus with discrete expression in the paraventricular nucleus of the hypothalamus and supraoptic nucleus, as well as in the cortex, septal nucleus, and preoptical area. Relaxin-3 has previously been shown to bind and activate the LGR7 relaxin receptor. However, we believe that neuroanatomical colocalization of GPCR135 and relaxin-3, coupled with a clear high affinity interaction, suggest that GPCR135 is the receptor for relaxin-3. The identification of relaxin-3 as the ligand for GPCR135 provides the framework for the discovery of a new brainstem/hypothalamus circuitry.  相似文献   
993.
The glucagon and glucagon-like peptide-1 (GLP-1) receptors are homologous family B seven-transmembrane (7TM) G protein-coupled receptors, and they selectively recognize the homologous peptide hormones glucagon (29 amino acids) and GLP-1 (30-31 amino acids), respectively. The amino-terminal extracellular domain of the glucagon and GLP-1 receptors (140-150 amino acids) determines specificity for the carboxyl terminus of glucagon and GLP-1, respectively. In addition, the glucagon receptor core domain (7TM helices and connecting loops) strongly determines specificity for the glucagon amino terminus. Only 4 of 15 residues are divergent in the glucagon and GLP-1 amino termini; Ser2, Gln3, Tyr10, and Lys12 in glucagon and the corresponding Ala8, Glu9, Val16, and Ser18 in GLP-1. In this study, individual substitution of these four residues of glucagon with the corresponding residues of GLP-1 decreased the affinity and potency at the glucagon receptor relative to glucagon. Substitution of distinct segments of the glucagon receptor core domain with the corresponding segments of the GLP-1 receptor rescued the affinity and potency of specific glucagon analogs. Site-directed mutagenesis identified the Asp385 --> Glu glucagon receptor mutant that specifically rescued Ala2-glucagon. The results show that three distinct epitopes of the glucagon receptor core domain determine specificity for the N terminus of glucagon. We suggest a glucagon receptor binding model in which the extracellular ends of TM2 and TM7 are close to and determine specificity for Gln3 and Ser2 of glucagon, respectively. Furthermore, the second extracellular loop and/or proximal segments of TM4 and/or TM5 are close to and determine specificity for Lys12 of glucagon.  相似文献   
994.
Reelin is a large secreted signaling protein that binds to two members of the low density lipoprotein receptor family, the apolipoprotein E receptor 2 and the very low density lipoprotein receptor, and regulates neuronal positioning during brain development. Reelin signaling requires activation of Src family kinases as well as tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This results in activation of phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt, and the inhibition of glycogen synthase kinase 3beta, a protein that is implicated in the regulation of axonal transport. Here we demonstrate that PI3K activation by Reelin requires Src family kinase activity and depends on the Reelin-triggered interaction of Dab1 with the PI3K regulatory subunit p85alpha. Because the Dab1 phosphotyrosine binding domain can interact simultaneously with membrane lipids and with the intracellular domains of apolipoprotein E receptor 2 and very low density lipoprotein receptor, Dab1 is preferentially recruited to the neuronal plasma membrane, where it is phosphorylated. Efficient Dab1 phosphorylation and activation of the Reelin signaling cascade is impaired by cholesterol depletion of the plasma membrane. Using a neuronal migration assay, we also show that PI3K signaling is required for the formation of a normal cortical plate, a step that is dependent upon Reelin signaling.  相似文献   
995.
The present work describes the biomechanical modeling of human postural mechanics in the saggital plane and the use of optimal control to generate open-loop raising-up movements from a squatting position. The biomechanical model comprises 10 equivalent musculotendon actuators, based on a 40 muscles model, and three links (shank, thigh and HAT-Head, Arms and Trunk). Optimal control solutions are achieved through algorithms based on the Consistent Approximations Theory (Schwartz and Polak, 1996), where the continuous non-linear dynamics is represented in a discrete space by means of a Runge-Kutta integration and the control signals in a spline-coefficient functional space. This leads to non-linear programming problems solved by a sequential quadratic programming (SQP) method. Due to the highly non-linear and unstable nature of the posture dynamics, numerical convergence is difficult, and specific strategies must be implemented in order to allow convergence. Results for control (muscular excitations) and angular trajectories are shown using two final simulation times, as well as specific control strategies are discussed.  相似文献   
996.
Plants display differential responses following mechanical damage and insect herbivory. Both caterpillar attack and the application of caterpillar oral secretions (OS) to wounded leaves stimulates volatile emission above mechanical damage alone. Volicitin ( N- 17-hydroxylinolenoyl- l -glutamine), present in beet armyworm (BAW, Spodoptera exigua ) OS, is a powerful elicitor of volatiles in excised maize seedlings ( Zea mays cv. Delprim). We consider some of the mechanistic differences between wounding and insect herbivory in maize by examining the activity of volicitin, changes in jasmonic acid (JA) levels, and volatile emission from both intact plant and excised leaf bioassays. Compared to mechanical damage alone, volicitin stimulated increases in both JA levels and sesquiterpene volatiles when applied to intact plants. In a bioassay comparison, excised leaves were more sensitive and produced far greater volatile responses than intact plants following applications of both volicitin and JA. In the excised leaf bioassay, volicitin applications (10–500 pmol) to wounded leaves resulted in dose dependent JA increases and a direct positive relationship between JA and sesquiterpene volatile emission. Interestingly, volicitin-induced JA levels did not differ between intact and excised bioassays, suggesting a possible interaction of JA with other regulatory signals in excised plants. In addition to JA, insect herbivory is known to stimulate the production of ethylene. Significant increases in ethylene were induced only by BAW herbivory and not by either wounding or volicitin treatments. Using intact plant bioassays, ethylene (at 1 µl l−1 or less) greatly promoted volatile emission induced by volicitin and JA but not mechanical damage alone. For intact plants, wounding, elicitor-induced JA and insect-induced ethylene appear to be important interacting components in the stimulation of insect-induced volatile emission.  相似文献   
997.
Trichasteropsis Eck, from the Muschelkalk of Germany is the only Triassic asteroid known from more than fragmentary material. Most spécimens representT. weissmanni (Münster) whereasT. senfti ECK,T. bielertorum n. sp., andBerckhemeraster charistikos n. gen. et n. sp., are each known from few individuals.Parsimony analysis hère treats the füll Ordovician to Récent history of the Asteroidea using a somasteroid (a pre-asteroid stelleroid) outgroup. Ambulacral évolution is critical in echinoderm history; the ambulacral arrangement of crown-group asteroids first appears in Paleozoic sister groups, and the subclass Ambuloasteroidea n. subcl. is proposed for Paleozoic and younger taxa with critical ambulacral apomorphies. Muschelkalk asteroids are assigned to the family Trichasteropsiidae n. fam., superorder Forcipulatacea. The recently described Triassic genusNoriaster belongs to the extant family Poraniidae, superorder Valvatacea.Trichasteropsis andNoriaster represent separate major phylogenetic branches of the post-Paleozoic infraclass Neoasteroidea, and together they indicate that diversification of modern-type asteroids was under-way during the Triassic, although the Mesozoic marine révolution largely was a Jurassic and later event. Post-Paleozoic asteroids appear to hâve returned to Paleozoic life modes in spite of new morphological expressions. Trichasteropsis is skeletally robust, suggesting protection from wave impact or predators. It is found in sédiments associated with shell banks but not from within the banks.Trichasteropsis senfti commonly occurs with brachiopods whereasT. weissmanni does not, although brachiopods are found in associated strata. Aspects of morphology of both species are similar to those of récent predatory Asteriidae suggesting similar behavior, but feeding habits ofTrichasteropsis are unverified.  相似文献   
998.
Patients affected with Refsum disease (RD) have elevated levels of phytanic acid due to a deficiency of the peroxisomal enzyme phytanoyl-CoA hydroxylase (PhyH). In most patients with RD, disease-causing mutations in the PHYH gene have been identified, but, in a subset, no mutations could be found, indicating that the condition is genetically heterogeneous. Linkage analysis of a few patients diagnosed with RD, but without mutations in PHYH, suggested a second locus on chromosome 6q22-24. This region includes the PEX7 gene, which codes for the peroxin 7 receptor protein required for peroxisomal import of proteins containing a peroxisomal targeting signal type 2. Mutations in PEX7 normally cause rhizomelic chondrodysplasia punctata type 1, a severe peroxisomal disorder. Biochemical analyses of the patients with RD revealed defects not only in phytanic acid alpha-oxidation but also in plasmalogen synthesis and peroxisomal thiolase. Furthermore, we identified mutations in the PEX7 gene. Our data show that mutations in the PEX7 gene may result in a broad clinical spectrum ranging from severe rhizomelic chondrodysplasia punctata to relatively mild RD and that clinical diagnosis of conditions involving retinitis pigmentosa, ataxia, and polyneuropathy may require a full screen of peroxisomal functions.  相似文献   
999.
Yeast mitochondrial initiation factor 2 (ymIF2) is encoded by the nuclear IFM1 gene. A His-tagged version of ymIF2, lacking its predicted mitochondrial presequence, was expressed in Escherichia coli and purified. Purified ymIF2 bound both E. coli fMet-tRNA(f)(Met) and Met-tRNA(f)(Met), but binding of formylated initiator tRNA was about four times higher than that of the unformylated species under the same conditions. In addition, the isolated ymIF2 was compared to E. coli IF2 in four other assays commonly used to characterize this initiation factor. Formylated and nonformylated Met-tRNA(f)(Met) were bound to E. coli 30S ribosomal subunits in the presence of ymIF2, GTP, and a short synthetic mRNA. The GTPase activity of ymIF2 was found to be dependent on the presence of E. coli ribosomes. The ymIF2 protected fMet-tRNA(f)(Met) to about the same extent as E. coli IF2 against nonenzymatic deaminoacylation. In contrast to E. coli IF2, the complex formed between ymIF2 and fMet-tRNA(f)(Met) was not stable enough to be analyzed in a gel shift assay. In similarity to other IF2 species isolated from bacteria or bovine mitochondria, the N-terminal domain could be eliminated without loss of initiator tRNA binding activity.  相似文献   
1000.
Myeloperoxidase (MPO) is an important component of the neutrophil's antimicrobial armory and has been implicated in promoting tissue damage in numerous inflammatory diseases. For the first time the standard reduction potential of the redox couple compound II/native enzyme has been determined to be (0.97+/-0.01)V at pH 7.0 and 25 degrees C. This was achieved by rapid mixing of preformed compound II with either tyrosine or nitrite by using the sequential-mixing stopped-flow technique and measuring spectrophotometrically the concentrations of the reacting species and products at equilibrium. Using the recently determined standard reduction potential for the couple compound I/native enzyme (1.16 V), the reduction potential of the couple compound I/compound II was calculated to be 1.35 V at pH 7 and 25 degrees C. These data reveal substantial differences between the two known heme peroxidase superfamilies and reflect the dramatic differences observed in the oxidisability of substrates by the MPO redox intermediates compound I and compound II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号