Isotopic variation of food stuffs propagates through trophic systems. But, this variation is dampened in each trophic step, due to buffering effects of metabolic and storage pools. Thus, understanding of isotopic variation in trophic systems requires knowledge of isotopic turnover. In animals, turnover is usually quantified in diet-switch experiments in controlled conditions. Such experiments usually involve changes in diet chemical composition, which may affect turnover. Furthermore, it is uncertain if diet-switch based turnover models are applicable under conditions with randomly fluctuating dietary input signals. Here, we investigate if turnover information derived from diet-switch experiments with dairy cows can predict the isotopic composition of metabolic products (milk, milk components and feces) under natural fluctuations of dietary isotope and chemical composition. First, a diet-switch from a C3-grass/maize diet to a pure C3-grass diet was used to quantify carbon turnover in whole milk, lactose, casein, milk fat and feces. Data were analyzed with a compartmental mixed effects model, which allowed for multiple pools and intra-population variability, and included a delay between feed ingestion and first tracer appearance in outputs. The delay for milk components and whole milk was ∼12 h, and that of feces ∼20 h. The half-life (t½) for carbon in the feces was 9 h, while lactose, casein and milk fat had a t½ of 10, 18 and 19 h. The 13C kinetics of whole milk revealed two pools, a fast pool with a t½ of 10 h (likely representing lactose), and a slower pool with a t½ of 21 h (likely including casein and milk fat). The diet-switch based turnover information provided a precise prediction (RMSE ∼0.2 ‰) of the natural 13C fluctuations in outputs during a 30 days-long period when cows ingested a pure C3 grass with naturally fluctuating isotope composition. 相似文献
Characterization of lacunar infarction (LI) by use of multimodal MRI including diffusion- and perfusion-weighted imaging (DWI, PWI) is difficult because of the small lesion size. Only a few studies evaluated PWI in LI and the results are inconsistent.
Methods
In 16 LI patients who underwent initial MRI within 6 hours after symptom onset and follow-up MRI within 1 week demographics, clinical presentation, and MRI findings were analyzed with special emphasis on DWI and PWI findings. Time to peak maps were classified as showing a normal perfusion pattern or areas of hypoperfusion which were further categorized in mismatch (PWI>DWI), inverse mismatch (PWI<DWI), and match (PWI=DWI). Quantitative perfusion maps were generated and analyzed by use of Signal Processing in NMR-Software (SPIN).
Results
Of the 16 patients (mean age 65.5±12.9 years), 14 (87.5%) were male. Clinical symptoms comprised dysarthria (50%), hemiparesis (81.3%), and hemihypaesthesia (18.8%). Intravenous thrombolysis was performed in 7 (43.8%) patients. Clinical improvement was observed in 12 patients (75 %), while 2 (12.5%) patients showed a deterioration and another 2 (12.5%) a stable course. Acute ischemic lesions (mean volume of 0.46±0.29 cm3) were located in the thalamus (n=8, 50%), internal capsule (n=4, 25%), corona Radiata (n=3, 18.8%) and the mesencephalon (n=1, 6.3%). Circumscribed hypoperfusion (mean volume 0.61±0.48 cm3) was evident in 10 (62.5%) patients. Of these, 3 patients demonstrated a match, 4 an inverse mismatch, and 3 a mismatch between DWI and PWI lesion. Mean CBF and CBV ratios were 0.65±0.28 and 0.84±0.41 respectively. Growth of DWI lesions was observed in 7 (43.8%) and reversal of DWI lesions in 3 (18.8%) patients.
Conclusions
MRI allows identification of different DWI and PWI patterns in LI, including growth and reversal of ischemic lesions. Consequently, it may serve for a better characterization of this stroke subtype and support treatment decisions in daily clinical practice. 相似文献
Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins.Base excision repair (BER) corrects small base lesions that do not significantly distort the DNA helix structure. Such damage typically results from deamination, oxidation, or methylation (Fig. 1). Much of the damage is the result of spontaneous decay of DNA (Lindahl 1993), although similar damage may also be caused by environmental chemicals, radiation, or treatment with cytostatic drugs. BER takes place in nuclei, as well as in mitochondria, largely using different isoforms of proteins or genetically distant proteins. The identification of Escherichia coli uracil-DNA glycosylase (Ung) in 1974 by Tomas Lindahl marks the discovery of BER. Lindahl searched for an enzyme activity that would act on genomic uracil resulting from cytosine deamination. Such an activity was found, but rather unexpectedly, it was not a nuclease. Instead, Lindahl identified an enzyme that cleaved the bond between uracil and deoxyribose. The resulting abasic site (AP-site) was suggested to be further processed by an AP-endonuclease, an exonuclease, a DNA polymerase, and a ligase. Thus, the fundamental steps in the BER pathway were outlined already in the very first paper (Lindahl 1974). Enzymes that cleave the bond between deoxyribose and a modified or mismatched DNA base are now called DNA glycosylases. Collectively these enzymes initiate base excision repair of a large number of base lesions, each recognized by one or a few DNA glycosylases with overlapping specificities.Open in a separate windowFigure 1.Chemistry of common base lesions and abasic sites.This relatively brief review focuses on recent advances in the mechanism and function of BER with a focus on mammalian proteins. The current view is that BER is important in relation to cancer, neurodegeneration, and aging (Jeppesen et al. 2011; Wallace et al. 2012). Because of limited space, we have referred to reviews for the majority of results published more than 6–7 years ago. Also, for more detailed analyses of different aspects of BER, the reader is referred to excellent reviews on BER proteins and pathways published in Huffman et al. (2005), Beard and Wilson (2006), Berti and McCann (2006), Cortázar et al. (2007), Kavli et al. (2007), Sousa et al. (2007), Tubbs et al. (2007), Berger et al. (2008), Robertson et al. (2009), Friedman and Stivers (2010), Wilson et al. (2010), Svilar et al. (2011), and Jacobs and Schar (2012). 相似文献
Purinergic Signalling - Dysfunction of the pulmonary endothelium is associated with most lung diseases. Extracellular nucleotides modulate a plethora of endothelial functions in the lung such as... 相似文献
Conjugated linoleic acids (CLAs) were reported to have anti-atherogenic properties in animal feeding experiments. In an attempt to elucidate the molecular mechanisms of these anti-atherogenic effects, the modulatory potential of CLA on cytokine-induced eicosanoid production from smooth muscle cells (SMCs), which contributes to the chronic inflammatory response associated with atherosclerosis, has been investigated in the present study. cis-9, trans-11 CLA and trans-10, cis-12 CLA were shown to reduce proportions of the eicosanoid precursor arachidonic acid in SMC total lipids and to inhibit cytokine-induced NF-κB DNA-binding activity, mRNA levels of inducible enzymes involved in eicosanoid formation (cPLA2, COX-2, mPGES), and the production of the prostaglandins PGE2 and PGI2 by TNFα-stimulated SMCs in a dose-dependent manner. The effect of 50 μmol/L of either CLA isomer was as effective as 10 μmol/L of the PPARγ agonist troglitazone in terms of inhibiting the TNFα-stimulated eicosanoid production by SMCs. PPARγ DNA-binding activity was increased by both CLA isomers compared to control cells. Moreover, it was shown that the PPARγ antagonist T0070907 partially abrogated the inhibitory action of CLA isomers on cytokine-induced eicosanoid production and NF-κB DNA-binding activity by vascular SMCs suggesting that PPARγ signalling is at least partially involved in the action of CLA in human vascular SMCs. With respect to the effects of CLA on experimental atherosclerosis, our findings suggest that the anti-inflammatory effect of CLA is at least partially responsible for the anti-atherogenic effects of CLA observed in vivo. 相似文献
Plant and Soil - Organisms intended to solubilise soil phosphate are chosen on their ability to produce a clear halo on a plate containing a sparingly soluble phosphate. This involves production of... 相似文献
Public gardens can help prevent detrimental effects of plant invasions by collecting and sharing data on taxa spreading from cultivation early in the invasion process, thereby acting as sentinels of plant invasion. Existing initiatives have called for public gardens to adopt measures preventing plant invasion, but it is unclear what actions individual gardens are implementing, as there is no formal mechanism for communicating their progress. This study used internal lists of escaping taxa from seven public gardens in the Midwestern United States and Canada to demonstrate how public gardens can collectively contribute data that is critical to assessing potential invasiveness. It also reveals methodological differences in how gardens develop their lists of escaping plants, leading to recommendations for standardization. Data pooled across gardens yielded 769 species spreading from cultivation at one or more gardens. Eight woody species were listed by all gardens despite not consistently being recognized as invasive by states and provinces containing the gardens; some species recorded by multiple gardens did not appear on any invasive lists. While it may be premature to call taxa escaping from cultivation at a few public gardens “invasive” or even “potentially invasive”, these plants should be monitored and evaluated with this information shared to facilitate stronger conclusions about risk. Thus, public gardens have a unique expertise in assisting invasive plant efforts as sentinels, particularly if challenges related to methodological inconsistencies and data sharing are suitably addressed, which is herein recommended through the adoption of a set of standardized guidelines.
Mutations in human DNA polymerase (Pol) ?, one of three eukaryotic Pols required for DNA replication, have recently been found associated with an ultramutator phenotype in tumors from somatic colorectal and endometrial cancers and in a familial colorectal cancer. Possibly, Pol ? mutations reduce the accuracy of DNA synthesis, thereby increasing the mutational burden and contributing to tumor development. To test this possibility in vivo, we characterized an active site mutant allele of human Pol ? that exhibits a strong mutator phenotype in vitro when the proofreading exonuclease activity of the enzyme is inactive. This mutant has a strong bias toward mispairs opposite template pyrimidine bases, particularly T•dTTP mispairs. Expression of mutant Pol ? in human cells lacking functional mismatch repair caused an increase in mutation rate primarily due to T•dTTP mispairs. Functional mismatch repair eliminated the increased mutagenesis. The results indicate that the mutant Pol ? causes replication errors in vivo, and is at least partially dominant over the endogenous, wild type Pol ?. Since tumors from familial and somatic colorectal patients arise with Pol ? mutations in a single allele, are microsatellite stable and have a large increase in base pair substitutions, our data are consistent with a Pol ? mutation requiring additional factors to promote tumor development. 相似文献