首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   44篇
  559篇
  2023年   3篇
  2022年   8篇
  2021年   3篇
  2020年   9篇
  2019年   8篇
  2018年   9篇
  2017年   6篇
  2016年   13篇
  2015年   20篇
  2014年   18篇
  2013年   30篇
  2012年   37篇
  2011年   49篇
  2010年   23篇
  2009年   14篇
  2008年   31篇
  2007年   26篇
  2006年   27篇
  2005年   20篇
  2004年   20篇
  2003年   26篇
  2002年   24篇
  2001年   10篇
  2000年   9篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   8篇
  1989年   3篇
  1985年   3篇
  1984年   8篇
  1983年   7篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   3篇
  1970年   3篇
  1968年   4篇
  1967年   2篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
11.
Thin slices of human tissues are characterized concerning reflection and transmission in a wavelength range from 400 to 1700 nm. The results are primarily useful to find a wavelength for the detection of subjacent blood vessels during surgical procedures, especially neurological surgery. The measurements have been conducted using a customized measuring station, utilizing two halogen bulb lamps and two spectrometers. This paper focuses on creating a data base with the optical properties of artery, brain, bone, nasal mucosa, and nerve. The spectral distributions are compared among each other, similarities and differences are pointed out. Each tissue has got unique spectral characteristics, whereas typical absorption bands can be found in the overall tissues, especially hemoglobin and water absorption bands. The reflectivity maxima are typically located in the red or near‐infrared. All the transmission maxima are located between 1075 nm and 1100 nm. The measurements have been conducted at the Institute of Anatomy at the University of Leipzig. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
12.
Background: Lifestyle seems to play an important role in endometrial cancer mortality, but it remains unclear which biomarkers are involved. The aim of this study was to assess the extent of the association between lifestyle-related biomarkers and the survival of endometrial cancer patients. Methods: A sub-cohort of 242 endometrial cancer patients, from a population-based study of the more than 90,000 female participants of the Vorarlberg Health Monitoring and Promotion Programme, was followed for a median duration of twelve years. Besides age, tumour staging, and histology, also pre-diagnostic levels of body mass index, blood pressure, triglycerides, total cholesterol, glucose, gamma-glutamyltransferase (GGT), and serum uric acid were analysed in Cox proportional hazards regression models to estimate multivariate mortality risks. Results: During follow-up 89 deaths occurred of which 49 were cancer-related. Survival was associated with age, tumour stage, and histology. Of the biomarkers, log10-transformed GGT showed a large effect on cancer-related mortality (HR = 3.35, 95% CI 1.12–10.03), whereas the other parameters did not appear with significant effects after adjustment for the other factors. Conclusion: Elevated level of GGT, a lifestyle-related marker, was associated with poor survival among endometrial cancer patients.  相似文献   
13.
The enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements. Here, we introduce a device named phenoSeeder, which enables the handling and phenotyping of individual seeds of very different sizes. The system consists of a pick-and-place robot and a modular setup of sensors that can be versatilely extended. Basic biometric traits detected for individual seeds are two-dimensional data from projections, three-dimensional data from volumetric measures, and mass, from which seed density is also calculated. Each seed is tracked by an identifier and, after phenotyping, can be planted, sorted, or individually stored for further evaluation or processing (e.g. in routine seed-to-plant tracking pipelines). By investigating seeds of Arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), and barley (Hordeum vulgare), we observed that, even for apparently round-shaped seeds of rapeseed, correlations between the projected area and the mass of seeds were much weaker than between volume and mass. This indicates that simple projections may not deliver good proxies for seed mass. Although throughput is limited, we expect that automated seed phenotyping on a single-seed basis can contribute valuable information for applications in a wide range of wild or crop species, including seed classification, seed sorting, and assessment of seed quality.Seeds play a major role in keeping continuity between successive generations (Esau, 1977) and are key for the distribution and evolution (Moles et al., 2005) of higher plants. Fertile seeds carry an embryo and may contain nutrient storage tissues in cotyledons, endosperm, and/or perisperm, supporting germination and seedling development at early developmental stages. Although this is true for all seed plants, various traits of seeds, such as size, shape, weight, and chemical composition, can be very different between plant species or accessions. For example, the Arabidopsis (Arabidopsis thaliana) accession Cape Verde Islands was reported to yield on average 40% fewer seeds than Landsberg erecta, but they are almost twice as heavy (Alonso-Blanco et al., 1999). Considering today’s plant species, single-seed mass may vary over a range of 11.5 orders of magnitude (Moles et al., 2005). Seed mass is under strong genetic control, whereas the total number of seeds of a plant is largely affected by the environment (Paul-Victor and Turnbull, 2009). It has been demonstrated that the size, mass, and shape of Arabidopsis seeds may be regulated by brassinosteroid (Jiang et al., 2013), and it was shown recently that seed size in rice (Oryza sativa) can be influenced by the epiallele Epi-rav6 (Zhang et al., 2015). The ability of plants to switch between small and larger seeds may be understood as an adaptation to novel environments (Igea et al., 2016). However, it is still not fully understood whether, or to what extent, the variability of seed traits within plant species or genotypes has an impact on the development and further performance of a plant.When comparing biometric seed data of different dimensions such as length (one-dimensional), projected area (two-dimensional [2D]), or volume and mass (both three-dimensional [3D]), one can argue that mass is the most relevant parameter as a proxy for the amount of reserves a seed provides for the offspring. This might be true even when considering that the type of reserves, such as proteins, carbohydrates, or lipids (Rolletschek et al., 2015), and also different seed tissues, such as seed coat, embryo, or endosperm, may contribute differently to seed mass (Alonso-Blanco et al., 1999). While seed mass and time to germination (radicle protrusion) do not necessarily correlate (Norden et al., 2009), in particular under greenhouse conditions, higher seed mass may be advantageous for seedling establishment under adverse environmental conditions (Moles et al., 2005). For example, shade-tolerant species showed largely higher seed masses than cogeneric species growing in open habitats, indicating that seedlings under low-light conditions need more reserves than under good light (Salisbury, 1974). Seedlings of wild radish (Raphanus raphanistrum) emerged more likely from heavier seeds than from small seeds under field conditions but not in the greenhouse (Stanton, 1984), and for Arabidopsis, seed mass was reported to be higher in populations growing naturally at higher altitudes taken as a proxy for harsher conditions (Montesinos-Navarro et al., 2011).Seed mass can be measured individually (Stanton, 1984), but it is generally collected as an average value of batches of 50 to 1,000 seeds (Jako et al., 2001; Jofuku et al., 2005; Montesinos-Navarro et al., 2011; Tanabata et al., 2012). Alternatively, 2D scans are analyzed to determine parameters such as seed length, width, area, and perimeter length as a measure for seed size (Tanabata et al., 2012). This approach can be implemented in high-throughput facilities to obtain projected areas of seed grains combined with genome-wide association studies (Yang et al., 2014). Although projected seed area can easily be measured with a common office scanner (Herridge et al., 2011; Tanabata et al., 2012; Moore et al., 2013), it is not necessarily a precise or reliable measure of the true seed size because it may depend on the shape (Alonso-Blanco et al., 1999) and the orientation of a seed at scan (see “Results”). These issues also apply when using 2D projections to calculate length-to-width ratios as a simple shape factor (Tanabata et al., 2012). Projected seed area also has been used to calculate seed mass, assuming a fixed relationship between these parameters (de Jong et al., 2011; Herridge et al., 2011). This may hold with sufficient accuracy when averaging a large number of seeds but might be misleading when considering individual seeds.From a physical point of view, volume should be a much better proxy for mass than 2D traits. Although it has been stated that for 65 species analyzed seed masses can be compared easily with seed volumes (Moles et al., 2005), it is not clear how these seed volumes were determined. Volumes can be assessed using advanced methods such as x-ray computed tomography (CT) on fruits (Stuppy et al., 2003) or synchrotron radiation x-ray tomographic microscopy applied in paleobiological studies (e.g. on fruits and seed; Friis et al., 2014). Nuclear magnetic resonance (NMR) methods are used to measure water uptake in kidney beans (Phaseolus vulgaris) and adzuki beans (Vigna angularis; Kikuchi et al., 2006) or to estimate seed weight and content (Borisjuk et al., 2011; Rolletschek et al., 2015) rather than volumes. To our best knowledge, affordable methods to measure seed volumes directly are not achievable so far. For that reason, we have set up a volume-carving method for 3D seed shape reconstruction that is described briefly here and in more detail in a recent publication (Roussel et al., 2016).While traits derived from scanning procedures can easily be assigned to individual seeds (Herridge et al., 2011), further handling and processing of phenotyped single seeds is not as simple, in particular for tiny ones like those of Arabidopsis. The aim of this work was to develop an automated seed-handling system that can analyze single seeds of very different sizes or shapes, from Arabidopsis seeds up to barley (Hordeum vulgare) seeds or even bigger. The phenoSeeder system is designed to pick and place seeds, to achieve basic morphometric traits (one-dimensional and 2D data from projections, 3D reconstruction data, and mass) of each individual seed, and to store all analyzed seed traits in a database. Another goal is to use phenoSeeder for seed-to-plant tracking approaches and to analyze whether, or which, particular seed traits have an impact on plant development and performance under various environmental conditions. We describe the main features of the phenoSeeder technology and present results obtained with seeds of three accessions of Arabidopsis, rapeseed (Brassica napus), and barley, respectively. When analyzing the data, we focused particularly on correlations between projected seed area, seed volume, and seed mass, with the hypothesis that the respective seed volume may better correlate with mass than the projected area.  相似文献   
14.
15.
16.
The importance of the biological function and activity of lipoproteins from the outer or cytoplasmic membranes of Gram-positive and Gram-negative bacteria is being increasingly recognized. It is well established that they are like the endotoxins (lipopolysaccharide (LPS)), which are the main amphiphilic components of the outer membrane of Gram-negative bacteria, potent stimulants of the human innate immune system, and elicit a variety of proinflammatory immune responses. Investigations of synthetic lipopeptides corresponding to N-terminal partial structures of bacterial lipoproteins defined the chemical prerequisites for their biological activity and in particular the number and length of acyl chains and sequence of the peptide part. Here we present experimental data on the biophysical mechanisms underlying lipopeptide bioactivity. Investigation of selected synthetic diacylated and triacylated lipopeptides revealed that the geometry of these molecules (i.e. the molecular conformations and supramolecular aggregate structures) and the preference for membrane intercalation provide an explanation for the biological activities of the different lipopeptides. This refers in particular to the agonistic or antagonistic activity (i.e. their ability to induce cytokines in mononuclear cells or to block this activity, respectively). Biological activity of lipopeptides was hardly affected by the LPS-neutralizing antibiotic polymyxin B, and the biophysical interaction characteristics were found to be in sharp contrast to that of LPS with polymyxin B. The analytical data show that our concept of "endotoxic conformation," originally developed for LPS, can be applied also to the investigated lipopeptide and suggest that the molecular mechanisms of cell activation by amphiphilic molecules are governed by a general principle.  相似文献   
17.
Previous evidence suggests that interactions between integrin cytoplasmic domains regulate integrin activation. We have constructed and validated recombinant structural mimics of the heterodimeric alpha(IIb)beta(3) cytoplasmic domain. The mimics elicited polyclonal antibodies that recognize a combinatorial epitope(s) formed in mixtures of the alpha(IIb) and beta(3) cytoplasmic domains but not present in either isolated tail. This epitope(s) is present within intact alpha(IIb)beta(3), indicating that interaction between the tails can occur in the native integrin. Furthermore, the combinatorial epitope(s) is also formed by introducing the activation-blocking beta(3)(Y747A) mutation into the beta(3) tail. A membrane-distal heptapeptide sequence in the alpha(IIb) tail ((997)RPPLEED) is responsible for this effect on beta(3). Membrane-permeant palmitoylated peptides, containing this alpha(IIb) sequence, specifically blocked alpha(IIb)beta(3) activation in platelets. Thus, this region of the alpha(IIb) tail causes the beta(3) tail to resemble that of beta(3)(Y747A) and suppresses activation of the integrin.  相似文献   
18.
1,25-(OH)(2) vitamin D(3) is important for calcium homeostasis and cell differentiation. The key enzyme for the activation of liver-derived 25(OH) vitamin D(3) is 25-hydroxyvitamin D(3) 1alpha-hydroxylase. It is expressed mainly in the kidney but also in peripheral tissues. A 1413-bp fragment of the 1alpha-hydroxylase promoter was cloned into luciferase vectors pGL2basic and pGL3basic. Sequence analyses revealed four base exchanges and three base deletions compared with the published sequence which were identically found in five control persons. In silico promoter analyses revealed 17 putative nuclear factor (NF)kappaB sites, 10 of which were found to bind NFkappaB in EMSA experiments. Cotransfection of NFkappaB p50 and p65 subunits resulted in dramatic reduction of the promoter activity of the full-length construct as well as a series of 5'-deletion constructs. Deletion of the farmost 3'-situated NFkappaB-responsive element almost abolished NFkappaB responsiveness. Treatment of human embryonic kidney 293 cells with sulfasalazine, a NFkappaB inhibitor, resulted in enhanced 1alpha-hydroxylase mRNA production. Down-regulation of 1alpha-hydroxylase promoter through NFkappaB signaling may contribute to the pathogenesis of inflammation-associated osteopenia/osteoporosis.  相似文献   
19.

Background  

In the emerging field of environmental genomics, direct cloning and sequencing of genomic fragments from complex microbial communities has proven to be a valuable source of new enzymes, expanding the knowledge of basic biological processes. The central problem of this so called metagenome-approach is that the cloned fragments often lack suitable phylogenetic marker genes, rendering the identification of clones that are likely to originate from the same genome difficult or impossible. In such cases, the analysis of intrinsic DNA-signatures like tetranucleotide frequencies can provide valuable hints on fragment affiliation. With this application in mind, the TETRA web-service and the TETRA stand-alone program have been developed, both of which automate the task of comparative tetranucleotide frequency analysis.  相似文献   
20.
The heterolactic bacterium Oenococcus oeni ferments fructose by a mixed heterolactic/mannitol fermentation. For heterolactic fermentation of fructose, the phosphoketolase pathway is used. The excess NAD(P)H from the phosphoketolase pathway is reoxidized by fructose (yielding mannitol). It is shown here that, under conditions of C-limitation or decreased growth rates, fructose can be fermented by heterolactic fermentation yielding nearly stoichiometric amounts of lactate, ethanol and CO(2). Quantitative evaluation of NAD(P)H-producing (phosphoketolase pathway) and -reoxidizing (ethanol, mannitol and erythritol pathways) reactions demonstrated that at high growth rates or in batch cultures the ethanol pathway does not have sufficient capacity for NAD(P)H reoxidation, requiring additional use of the mannitol pathway to maintain the growth rate. In addition, insufficient capacities to reoxidize NAD(P)H causes inhibition of growth, whereas increased NAD(P)H reoxidation by electron acceptors such as pyruvate increases the growth rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号