首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   19篇
  2023年   3篇
  2022年   8篇
  2021年   3篇
  2020年   6篇
  2019年   6篇
  2018年   8篇
  2017年   5篇
  2016年   11篇
  2015年   17篇
  2014年   9篇
  2013年   28篇
  2012年   31篇
  2011年   43篇
  2010年   18篇
  2009年   12篇
  2008年   23篇
  2007年   20篇
  2006年   18篇
  2005年   10篇
  2004年   19篇
  2003年   15篇
  2002年   17篇
  2001年   6篇
  1998年   5篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1991年   3篇
  1990年   4篇
  1985年   2篇
  1982年   2篇
  1974年   3篇
  1969年   3篇
  1968年   3篇
  1965年   2篇
  1964年   3篇
  1963年   3篇
  1961年   2篇
  1959年   4篇
  1958年   2篇
  1956年   2篇
  1954年   4篇
  1953年   2篇
  1950年   2篇
  1942年   3篇
  1941年   3篇
  1940年   6篇
  1938年   3篇
  1936年   2篇
排序方式: 共有443条查询结果,搜索用时 31 毫秒
351.
Elective cryopreservation of cultured embryos has become a treatment option for women at risk for ovarian hyperstimulation syndrome (OHSS). The aim of our study was to investigate the outcome of elective cryopreservation and consecutive frozen-thawed embryo transfer (FET) in a large IVF clinic in Austria. A total of 6104 controlled ovarian hyperstimulation cycles (COH) were performed on 2998 patients including 200 patients (6.7%) who were undergoing elective cryopreservation and FET due to high risk of OHSS. We estimated the cumulative live birth rate using the Kaplan-Meier method and evaluated independent predictors for successful live births with a Cox model. A total of 270 frozen-thawed embryo transfers were performed on 200 patients with up to 4 transfers per patient. The first embryo transfer showed a live birth rate of 42.0%, the second transfer showed a cumulative rate of 58.5%. After a total of 4 FETs from the same COH cycle, a cumulative live birth rate of 61.0% per COH cycle could be achieved. Four cases of OHSS occurred amongst these patients (2.0%), all of them of moderate severity. Multivariate analysis identified maternal age, the use of assisted hatching and the number of embryos transferred at the blastocyst stage as independent predictors for cumulative live birth. Our study clearly suggests that elective FET is safe and shows excellent cumulative live birth rates. This concept can, therefore, be used to avoid the severe adverse events caused by COH and the inefficient use of cultured embryos.  相似文献   
352.
Queuosine (Q) is a hypermodified RNA base that replaces guanine in the wobble positions of 5′-GUN-3′ tRNA molecules. Q is exclusively made by bacteria, and the corresponding queuine base is a micronutrient salvaged by eukaryotic species. The final step in Q biosynthesis is the reduction of the epoxide precursor, epoxyqueuosine, to yield the Q cyclopentene ring. The epoxyqueuosine reductase responsible, QueG, shares distant homology with the cobalamin-dependent reductive dehalogenase (RdhA), however the role played by cobalamin in QueG catalysis has remained elusive. We report the solution and structural characterization of Streptococcus thermophilus QueG, revealing the enzyme harbors a redox chain consisting of two [4Fe-4S] clusters and a cob(II)alamin in the base-off form, similar to RdhAs. In contrast to the shared redox chain architecture, the QueG active site shares little homology with RdhA, with the notable exception of a conserved Tyr that is proposed to function as a proton donor during reductive dehalogenation. Docking of an epoxyqueuosine substrate suggests the QueG active site places the substrate cyclopentane moiety in close proximity of the cobalt. Both the Tyr and a conserved Asp are implicated as proton donors to the epoxide leaving group. This suggests that, in contrast to the unusual carbon-halogen bond chemistry catalyzed by RdhAs, QueG acts via Co-C bond formation. Our study establishes the common features of Class III cobalamin-dependent enzymes, and reveals an unexpected diversity in the reductive chemistry catalyzed by these enzymes.  相似文献   
353.
We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. In summary, our new method maintains the strengths of FASP and simultaneously overcomes one of the major limitations of FASP without compromising protein identification and quantification.Mass spectrometry (MS)-based proteomics is moving increasingly into the translational and clinical research arena, where robust and efficient sample processing is of particular importance. The conventional sample processing methods in proteomics, namely SDS-PAGE, or in-solution-based sample processing, are slow and laborious and thus do not easily provide the reproducibility and throughput to meet current demands. A paradigm shift was the introduction of a filter-aided sample processing method (FASP), which is initially described by Manza et al. (1) and then fully realized in practice by Wisniewski et al. (2). These filter-aided methods make use of ultrafiltration membranes with molecular weight cut offs (MWCO) in the 10 to 30 kDa range to efficiently remove small molecules and salts and to capture denatured proteins on a cellulose filter even if the molecular weight of the protein is much smaller than the nominal MWCO of the ultrafiltration membrane. Thus, the denaturation step is crucial to ensure that proteins much smaller than the nominal MWCO are efficiently retained by, e.g. a 10 kDa MWCO filter.In translational and clinical proteomics, which normally include large cohorts, the multititer-well plate is the preferred format for sample processing and storage. Although the application of FASP in the 96-well plate format has been described (3, 4), the major limitation of FASP in the 96-well plate is the much slower speed at which the 96-well plates have to be centrifuged: while a single ultrafiltration unit withstands up to 14,000 × g, the 96-well plate format can only be centrifuged at g-forces of up to 2,200 × g. This significantly lower g-force for 96-well plates results in a slow liquid transfer, which in turn considerably prolongs the required centrifugation times to hours instead of tens of minutes for the three to four necessary centrifugation steps (i) for the initial loading, reduction and alkylation, (ii) for the different washing steps, and (iii) for the elution (3).Independent of the format FASP is performed in, the conventional FASP also requires relative large volumes of high salt concentration for efficient elution of the tryptic peptides. Hence, reversed-phase-based desalting of the samples is a prerequisite for subsequent LC/MS experiments. Apart from prolonging the entire FASP procedure, the numerous additional handling steps are potentially also associated with peptide losses (5).In this study, we describe a novel sample processing workflow for MS-based proteomics that utilizes the strengths of filter-aided sample processing methods and at the same time overcomes their major limitations, without compromising the results, i.e. significantly reducing the number of identified peptides and/or proteins. The result is a significantly improved throughput as 96 samples (or multiples thereof) can be completely processed within a single workday.  相似文献   
354.
Aerobic anoxygenic photosynthetic bacteria (AAnP) were recently proposed to be significant contributors to global oceanic carbon and energy cycles. However, AAnP abundance, spatial distribution, diversity and potential ecological importance remain poorly understood. Here we present metagenomic data from the Global Ocean Sampling expedition indicating that AAnP diversity and abundance vary in different oceanic regions. Furthermore, we show for the first time that the composition of AAnP assemblages change between different oceanic regions, with specific bacterial assemblages adapted to open ocean or coastal areas respectively. Our results support the notion that marine AAnP populations are complex and dynamic, and compose an important fraction of bacterioplankton assemblages in certain oceanic areas.  相似文献   
355.

Background  

Usher syndrome type 1 (USH1) is the leading cause of deafblindness. In most populations, many private mutations are distributed across the five known USH1 genes. We investigated patients from the French Canadian population of Quebec (approximately 6 million people) that descends from about 8,500 French settlers who colonized the St Lawrence River valley between 1608 and 1759. We hypothesized that founder mutations in USH1 genes exist in this population.  相似文献   
356.
Integrating vector systems used in clinical gene therapy have proven their therapeutic potential in the long-term correction of immunodeficiencies. The integration loci of such vectors in the cellular genome represent a molecular marker unique for each transduced cell and its clonal progeny. To gain insight into the physiology of gene-modified hematopoietic repopulation and vector-related influences on clonal contributions, we have previously introduced a technology--linear amplification-mediated (LAM) PCR--for detecting and sequencing unknown DNA flanking sequences down to the single cell level (Supplementary Note online). LAM-PCR analyses have enabled qualitative and quantitative measurements of the clonal kinetics of hematopoietic regeneration in gene transfer studies, and uncovered the clonal derivation of non-leukemogenic and leukemogenic insertional side effects in preclinical and clinical gene therapy studies. The reliability and robustness of this method results from the initial preamplification of the vector-genome junctions preceding nontarget DNA removal via magnetic selection. Subsequent steps are carried out on a semisolid streptavidin phase, including synthesis of double complementary strands, restriction digest, ligation of a linker cassette onto the genomic end of the fragment and exponential PCR(s) with vector- and linker cassette-specific primers. LAM-PCR can be adjusted to all unknown DNA sequences adjacent to a known DNA sequence. Here we describe the use of LAM-PCR analyses to identify 5' long terminal repeat (LTR) retroviral vector adjacent genomic sequences.  相似文献   
357.
Biological Invasions - The editorial board of this journal, Biological Invasions, aims to publish research that informs understanding of the patterns and processes of invasions and discussion of...  相似文献   
358.
Members of the flavobacterial genus Polaribacter thrive in response to North Sea spring phytoplankton blooms. We analyzed two respective Polaribacter species by whole genome sequencing, comparative genomics, substrate tests and proteomics. Both can degrade algal polysaccharides but occupy distinct niches. The liquid culture isolate Polaribacter sp. strain Hel1_33_49 has a 3.0-Mbp genome with an overall peptidase:CAZyme ratio of 1.37, four putative polysaccharide utilization loci (PULs) and features proteorhodopsin, whereas the agar plate isolate Polaribacter sp. strain Hel1_85 has a 3.9-Mbp genome with an even peptidase:CAZyme ratio, eight PULs, a mannitol dehydrogenase for decomposing algal mannitol-capped polysaccharides but no proteorhodopsin. Unlike other sequenced Polaribacter species, both isolates have larger sulfatase-rich PULs, supporting earlier assumptions that Polaribacter take part in the decomposition of sulfated polysaccharides. Both strains grow on algal laminarin and the sulfated polysaccharide chondroitin sulfate. For strain Hel1_33_49, we identified by proteomics (i) a laminarin-induced PUL, (ii) chondroitin sulfate-induced CAZymes and (iii) a chondroitin-induced operon that likely enables chondroitin sulfate recognition. These and other data suggest that strain Hel1_33_49 is a planktonic flavobacterium feeding on proteins and a small subset of algal polysaccharides, while the more versatile strain Hel1_85 can decompose a broader spectrum of polysaccharides and likely associates with algae.  相似文献   
359.
Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons’ collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.  相似文献   
360.
Summary To increase the solvent productivity of the acetone-butanol fermentation, a continuous culture of Clostridium acetobytylicum with cell recycling was used. At a dry cell mass concentration of 8 g l-1 and a dilution rate of D=0.64 h-1, a solvent productivity of 5.4 g l-1 h-1 was attained. To prevent degeneration of the culture, which occurs with high concentrations of solvents (acetone, butanol and ethanol), different reactor cascades were used. A two-stage cascade with cell recycling and turbidostatic cell concentration control turned out to be the best solution, the first stage of which was kept at relatively low cell and product concentrations. A solvent productivity of 3 and 2.3 g l-1 h-1, respectively, was achieved at solvent concentrations of 12 and 15 g l-1.Symbols D Dilution rate (h-1) - r p solvent productivity (g l-1 h-1) - s residual glucose concentration (g l-1) - V R reactor volume (l) - V O overall volume (l) - x (dry) cell mass concentration (g l-1) - Y P/S solvent yield (g g-1)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号