首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1290篇
  免费   139篇
  2023年   9篇
  2022年   15篇
  2021年   42篇
  2020年   23篇
  2019年   33篇
  2018年   30篇
  2017年   33篇
  2016年   53篇
  2015年   71篇
  2014年   86篇
  2013年   103篇
  2012年   88篇
  2011年   90篇
  2010年   64篇
  2009年   33篇
  2008年   44篇
  2007年   68篇
  2006年   41篇
  2005年   50篇
  2004年   45篇
  2003年   50篇
  2002年   37篇
  2001年   23篇
  2000年   17篇
  1999年   24篇
  1998年   7篇
  1997年   12篇
  1996年   10篇
  1995年   10篇
  1994年   11篇
  1993年   5篇
  1992年   15篇
  1991年   12篇
  1990年   10篇
  1989年   10篇
  1988年   11篇
  1987年   17篇
  1986年   8篇
  1985年   14篇
  1984年   6篇
  1983年   6篇
  1982年   6篇
  1977年   6篇
  1975年   6篇
  1974年   9篇
  1972年   6篇
  1971年   4篇
  1970年   8篇
  1969年   5篇
  1957年   3篇
排序方式: 共有1429条查询结果,搜索用时 31 毫秒
41.
Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10−8) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes.  相似文献   
42.
Two cryptic lineages of ‘Mountain Gazelles’ have been reported based on molecular phylogenetic analyses using maternally inherited (mitochondrial) sequence markers, namely Gazella gazella in the Levant and G. arabica south of the Arava Valley into the Arabian Peninsula. Here, we provide a rigorous test for the existence of two distinct lineages based on bi-parentally inherited (nuclear microsatellite) markers. Our study confirms two genetically distinct clusters in the Levant and detected no gene-flow between them. Divergence time (inferred from a cytochrome b-based phylogeny) was approximately one MYA. Treating and breeding both lineages separately in future conservation and captive breeding programmes is highly recommended.  相似文献   
43.
44.
The processing of faces relies on a specialized neural system comprising bilateral cortical structures with a dominance of the right hemisphere. However, due to inconsistencies of earlier findings as well as more recent results such functional lateralization has become a topic of discussion. In particular, studies employing behavioural tasks and electrophysiological methods indicate a dominance of the right hemisphere during face perception only in men whereas women exhibit symmetric and bilateral face processing. The aim of this study was to further investigate such sex differences in hemispheric processing of personally familiar and opposite-sex faces using whole-head magnetoencephalography (MEG). We found a right-lateralized M170-component in occipito-temporal sensor clusters in men as opposed to a bilateral response in women. Furthermore, the same pattern was obtained in performing dipole localization and determining dipole strength in the M170-timewindow. These results suggest asymmetric involvement of face-responsive neural structures in men and allow to ascribe this asymmetry to the fusiform gyrus. This specifies findings from previous investigations employing event-related potentials (ERP) and LORETA reconstruction methods yielding rather extended bilateral activations showing left asymmetry in women and right lateralization in men. We discuss our finding of an asymmetric fusiform activation pattern in men in terms of holistic face processing during face evaluation and sex differences with regard to visual strategies in general and interest for opposite faces in special. Taken together the pattern of hemispheric specialization observed here yields new insights into sex differences in face perception and entails further questions about interactions between biological sex, psychological gender and influences that might be stimulus-driven or task dependent.  相似文献   
45.
A key challenge for bioprocess engineering is the identification of the optimum process conditions for the production of biochemical and biopharmaceutical compounds using prokaryotic as well as eukaryotic cell factories. Shake flasks and bench-scale bioreactor systems are still the golden standard in the early stage of bioprocess development, though they are known to be expensive, time-consuming, and labor-intensive as well as lacking the throughput for efficient production optimizations. To bridge the technological gap between bioprocess optimization and upscaling, we have developed a microfluidic bioreactor array to reduce time and costs, and to increase throughput compared with traditional lab-scale culture strategies. We present a multifunctional microfluidic device containing 12 individual bioreactors (Vt = 15 µl) in a 26 mm × 76 mm area with in-line biosensing of dissolved oxygen and biomass concentration. Following initial device characterization, the bioreactor lab-on-a-chip was used in a proof-of-principle study to identify the most productive cell line for lactic acid production out of two engineered yeast strains, evaluating whether it could reduce the time needed for collecting meaningful data compared with shake flasks cultures. Results of the study showed significant difference in the strains' productivity within 3 hr of operation exhibiting a 4- to 6-fold higher lactic acid production, thus pointing at the potential of microfluidic technology as effective screening tool for fast and parallelizable industrial bioprocess development.  相似文献   
46.
The ectodomain of the human epidermal growth factor receptor (hEGFR) controls input to several cell signalling networks via binding with extracellular growth factors. To gain insight into the dynamics and ligand binding of the ectodomain, the hEGFR monomer was subjected to molecular dynamics simulation. The monomer was found to be substantially more flexible than the ectodomain dimer studied previously. Simulations where the endogeneous ligand EGF binds to either Subdomain I or Subdomain III, or where hEGFR is unbound, show significant differences in dynamics. The molecular mechanics Poisson–Boltzmann surface area method has been used to derive relative free energies of ligand binding, and we find that the ligand is capable of binding either subdomain with a slight preference for III. Alanine‐scanning calculations for the effect of selected ligand mutants on binding reproduce the trends of affinity measurements. Taken together, these results emphasize the possible role of the ectodomain monomer in the initial step of ligand binding, and add details to the static picture obtained from crystal structures. Proteins 2013; 81:1931–1943. © 2013 The Authors. Proteins published by Wiley Periodicals, Inc.  相似文献   
47.
We describe an exceptionally well-preserved partial skeleton of a new bird from the early Eocene Fur Formation of Denmark. Like other fossils from these marine deposits, the partial skeleton is three-dimensionally preserved and articulated. This new Danish specimen consists of a skull, vertebral column, ribs, pelvis, and hindlimbs. Concerning characters of the pelvis, tibiotarsus and tarsometatarsus, the new fossil bears morphological affinities to charadriiform birds (shorebirds and relatives). A phylogenetic analysis of higher neomithine (modern birds) taxa also supports a close relationship between the new specimen and modern Charadriiformes. The morphologies of the skull and vertebrae, however, distinguish the new fossil from all recent charadriiform families.  相似文献   
48.
The anatomical localization of caffeine within young Camellia sinensis leaves was investigated using immunohistochemical methods and confocal scanning laser microscopy. Preliminary fixation experiments were conducted with young C. sinensis leaves to determine which fixation procedure retained caffeine the best as determined by high-performance liquid chromatography analysis. High pressure freezing, freeze substitution, and embedding in resin was deemed the best protocol as it retained most of the caffeine and allowed for the samples to be sectioned with ease. Immunohistochemical localization with primary anti-caffeine antibodies and conjugated secondary antibodies on leaf sections proved at the tissue level that caffeine was localized and accumulated within vascular bundles, mainly the precursor phloem. With the use of a pressure bomb, xylem sap was collected using a micro syringe. The xylem sap was analyzed by thin-layer chromatography and the presence of caffeine was determined. We hypothesize that caffeine is synthesized in the chloroplasts of photosynthetic cells and transported to vascular bundles where it acts as a chemical defense against various pathogens and predators. Complex formation of caffeine with chlorogenic acid is also discussed as this may also help explain caffeine’s localization.  相似文献   
49.
Whereas the biochemical properties of the monooxygenase components that catalyze the oxidation of 2,5-diketocamphane and 3,6-diketocamphane (2,5-DKCMO and 3,6-DKCMO, respectively) in the initial catabolic steps of (+) and (−) isomeric forms of camphor (CAM) metabolism in Pseudomonas putida ATCC 17453 are relatively well characterized, the actual identity of the flavin reductase (Fred) component that provides the reduced flavin to the oxygenases has hitherto been ill defined. In this study, a 37-kDa Fred was purified from a camphor-induced culture of P. putida ATCC 17453 and this facilitated cloning and characterization of the requisite protein. The active Fred is a homodimer with a subunit molecular weight of 18,000 that uses NADH as an electron donor (Km = 32 μM), and it catalyzes the reduction of flavin mononucleotide (FMN) (Km = 3.6 μM; kcat = 283 s−1) in preference to flavin adenine dinucleotide (FAD) (Km = 19 μM; kcat = 128 s−1). Sequence determination of ∼40 kb of the CAM degradation plasmid revealed the locations of two isofunctional 2,5-DKCMO genes (camE25–1 for 2,5-DKCMO-1 and camE25–2 for 2,5-DKCMO-2) as well as that of a 3,6-DKCMO-encoding gene (camE36). In addition, by pulsed-field gel electrophoresis, the CAM plasmid was established to be linear and ∼533 kb in length. To enable functional assessment of the two-component monooxygenase system in Baeyer-Villiger oxidations, recombinant plasmids expressing Fred in tandem with the respective 2,5-DKCMO- and 3,6-DKCMO-encoding genes in Escherichia coli were constructed. Comparative substrate profiling of the isofunctional 2,5-DCKMOs did not yield obvious differences in Baeyer-Villiger biooxidations, but they are distinct from 3,6-DKCMO in the stereoselective oxygenations with various mono- and bicyclic ketone substrates.  相似文献   
50.
The American cherry fruit fly is an invasive pest species in Europe, of serious concern in tart cherry production as well as for the potential to hybridize with the European cherry fruit fly, Rhagoletis cerasi L. (Diptera: Tephritidae), which might induce new pest dynamics. In the first European reports, the question arose whether only the eastern American cherry fruit fly, Rhagoletis cingulata (Loew) (Diptera: Tephritidae), is present, or also the closely related western American cherry fruit fly, Rhagoletis indifferens Curran. In this study, we investigate the species status of European populations by comparing these with populations of both American species from their native ranges, the invasion dynamics in German (first report in 1993) and Hungarian (first report in 2006) populations, and we test for signals of hybridization with the European cherry fruit fly. Although mtDNA sequence genealogy could not separate the two American species, cross‐species amplification of 14 microsatellite loci separated them with high probabilities (0.99–1.0) and provided evidence for R. cingulata in Europe. German and Hungarian R. cingulata populations differed significantly in microsatellite allele frequencies, mtDNA haplotype and wing pattern distributions, and both were genetically depauperate relative to North American populations. The diversity suggests independent founding events in Germany and Hungary. Within each country, R. cingulata displayed little or no structure in any trait, which agrees with rapid local range expansions. In cross‐species amplifications, signals of hybridization between R. cerasi and R. cingulata were found in 2% of R. cingulata individuals and in 3% of R. cerasi. All putative hybrids had R. cerasi mtDNA indicating that the original between‐species mating involved R. cerasi females and R. cingulata males.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号