首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   724篇
  免费   90篇
  2023年   6篇
  2022年   10篇
  2021年   35篇
  2020年   18篇
  2019年   25篇
  2018年   15篇
  2017年   24篇
  2016年   40篇
  2015年   51篇
  2014年   62篇
  2013年   77篇
  2012年   60篇
  2011年   67篇
  2010年   40篇
  2009年   25篇
  2008年   27篇
  2007年   44篇
  2006年   22篇
  2005年   34篇
  2004年   27篇
  2003年   31篇
  2002年   18篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1957年   2篇
  1941年   1篇
  1933年   1篇
排序方式: 共有814条查询结果,搜索用时 15 毫秒
111.
Anthropogenic increases in atmospheric CO2 concentration and the connected deposition of organic matter into the soil influence the occurrence of decomposers who regulate carbon release back into the atmosphere. The effects of increased concentration of atmospheric carbon dioxide, plant species cover quality and nitrogen (N) fertilization on the coenosis composition of soil saprobic microfungi were studied under field conditions (Swiss Free Air Carbon Dioxide Enrichment experiment). In total, 42 species of microfungi were detected in examined soil. The most significant response of soil mycoflora was induced by the species identity of plant cover. Higher N fertilization significantly suppressed the abundance of soil microfungi at ambient CO2. The effect of increased CO2 on colony‐forming units was not significant when taken as an independent treatment; however, this factor interacted significantly with N availability. Some species, e.g. the Clonostachys rosea, were proven associated with the plant cover components, in this particular case with Trifolium repens. Therefore, we suggest the identity of plant species constituting plant cover as the most important factors affecting soil microfungi in agroecosystems.  相似文献   
112.
Models of sexual selection suggest that females should prefer to mate with older males because old age is evidence of heritable high viability. In a longitudinal analysis, we demonstrate that male field crickets (Gryllus campestris) alter their calling song with age. Carrier frequency, a calling song character related to growing condition and the main song component under female preference, changed towards higher sexual attractiveness with age. Body mass decreased slightly with age, while chirp rate, an indicator of current condition, remained stable. By choosing males singing at a low frequency, female field crickets would base their mate choice decision on a sexual trait that indicates superior growing conditions as juvenile and on viability, i.e. enhanced current condition as adult.  相似文献   
113.
The persistence of floating seaweeds, which depends on abiotic conditions but also herbivory, had previously been mostly tested in outdoor mesocosm experiments. In order to investigate if the obtained mesocosm results of high seaweed persistence under natural environmental conditions and under grazing pressure can be extrapolated to field situations, we conducted in situ experiments. During two summers (2007 and 2008), Macrocystis pyrifera was tethered (for 14 d) to lines in the presence and absence of the amphipod Peramphithoe femorata at three sites (Iquique, Coquimbo, Calfuco). We hypothesized that grazing damage and seaweed persistence vary among sites due to different abiotic factors. By incubating the sporophytes in mesh bags, we were either able to isolate (grazing) or exclude (control) amphipods. To test for a mesh bag artifact, a set of sporophytes was incubated without mesh bags (natural). Mesh bags used to exclude herbivores influenced sporophyte growth and physiological performance. The chlorophyll a (Chl a) content depended largely on grazers and grazed sporophytes grew less than natural and control sporophytes within the two summers. A decrease in Chl a content was found for the sites with the highest prevailing irradiances and temperatures, suggesting an efficient acclimation to these sea surface conditions. Our field‐based results of sporophyte acclimation ability even under grazing pressure widely align with previous mesocosm results. We conclude that M. pyrifera and other temperate floating seaweeds can function as long‐distance dispersal vectors even with hitchhiking mesoherbivores.  相似文献   
114.
115.
Avian carcasses can provide important information on the trophic ecology of birds. Usually, the number of carcasses available for examination is limited and therefore it is important to gain as much dietary information per specimen as possible. In piscivorous birds and raptors, the stomach has been the primary source of dietary information, whereas the gut (intestine) has so far been neglected as it usually contains only a few morphologically identifiable hard parts of prey. Molecular approaches have the potential to retrieve dietary information from the gut, although this has not yet been verified. As well as identifying the prey, it is important to estimate any secondary predation to avoid food web errors in dietary analyses. The assignment of accidentally consumed prey is notoriously difficult regardless of the prey identification approach used. In the present study, morphological and molecular analyses were, for the first time, combined to maximize the dietary information retrievable from the complete digestive tract of Great Cormorants Phalacrocorax carbo sinensis. Moreover, a novel approach based on predator–prey size ratios was applied to these piscivorous birds to minimize the number of samples that might contain secondarily predated prey. The stomach contents of the examined birds were found to provide the most dietary information when morphological and molecular analyses were used in combination. However, compared with the morphological approach, the molecular analysis increased the number of fish species detected by 39%. The molecular approach also permitted the identification of fish DNA in the Cormorant guts. Predator–prey size ratios derived from morphological analysis of fish hard parts can reduce the incidence of potential confounding influence of secondarily predated prey by 80%. Our findings demonstrate that a combination of morphological and molecular approaches maximizes the trophic information retrievable from bird carcasses.  相似文献   
116.
117.
Because fens have undergone dramatic declines in recent decades, an important question is which management regimes and habitat parameters are most effective in preserving fen biodiversity. The aim of the present study was to assess the effects of five different management regimes (intensive grassland, moist meadows, summer harvested sites, winter harvested sites, fallows) on staphylinid beetle assemblages. During the study period 5,989 individuals from 92 staphylinid beetle species were recorded. Species richness and abundance were highest on intensive grassland and fallows, and water level and vegetation height had significant impacts on the abundance of staphylinids. On winter-harvested sites species richness and abundance were lowest. In general, staphylinid beetles did not show pronounced variation among management regimes, while the environmental factors water level, vegetation height and top soil mineralisation seemed to have a larger structuring impact. The number of threatened species and the conservation index were highest on summer-harvested sites and fallows, representing fairly well-preserved fens. We conclude that summer harvest of reed beds or no management at all appears to be most beneficial for the conservation of staphylinid beetles.  相似文献   
118.
119.
120.
Understanding the spatio‐temporal distribution of ungulates is important for effective wildlife management, particularly for economically and ecologically important species such as wild boar (Sus scrofa). Wild boars are generally considered to exhibit substantial behavioral flexibility, but it is unclear how their behavior varies across different conservation management regimes and levels of human pressure. To analyze if and how wild boars adjust their space use or their temporal niche, we surveyed wild boars across the core and buffer zones (collectively referred to as the conservation zone) and the transition zone of a biosphere reserve. These zones represent low and high levels of human pressure, respectively. Specifically, we employed a network of 53 camera traps distributed in the Schaalsee UNESCO Biosphere Reserve over a 14‐month period (19,062 trap nights) and estimated circadian activity patterns, diel activity levels, and occupancy of wild boars in both zones. To account for differences in environmental conditions and day length, we estimated these parameters separately for seven 2‐month periods. Our results showed that the wild boars were primarily nocturnal, with diurnal activity occurring dominantly during the summer months. The diel activity patterns in the two zones were very similar overall, although the wild boars were slightly less active in the transition zone than in the conservation zone. Diel activity levels also varied seasonally, ranging from 7.5 to 11.0 h day−1, and scaled positively with the length of the night (R 2 = 0.66–0.67). Seasonal occupancy estimates were exceptionally high (point estimates ranged from 0.65 to 0.99) and similar across zones, suggesting that the wild boars used most of the biosphere reserve. Overall, this result suggests that different conservation management regimes (in this case, the zoning of a biosphere reserve) have little impact on wild boar behavior. This finding is relevant for wildlife management in protected areas where possibly high wild boar densities could interfere with conservation goals within these areas and those of agricultural land use in their vicinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号