首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2296篇
  免费   227篇
  国内免费   2篇
  2525篇
  2024年   4篇
  2023年   35篇
  2022年   98篇
  2021年   156篇
  2020年   66篇
  2019年   81篇
  2018年   79篇
  2017年   67篇
  2016年   111篇
  2015年   176篇
  2014年   157篇
  2013年   167篇
  2012年   209篇
  2011年   176篇
  2010年   103篇
  2009年   101篇
  2008年   129篇
  2007年   93篇
  2006年   96篇
  2005年   72篇
  2004年   55篇
  2003年   49篇
  2002年   57篇
  2001年   15篇
  2000年   11篇
  1999年   7篇
  1998年   12篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   11篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1986年   4篇
  1985年   4篇
  1983年   3篇
  1980年   3篇
  1977年   4篇
  1975年   3篇
  1974年   4篇
  1971年   3篇
  1967年   3篇
  1966年   3篇
  1955年   4篇
  1946年   2篇
  1926年   2篇
排序方式: 共有2525条查询结果,搜索用时 15 毫秒
71.
Coral Reefs - Coral reefs are suffering unprecedented declines worldwide. Most studies focus on stressors such as rising temperatures, nutrient pollution, overfishing, and ocean acidification as...  相似文献   
72.
73.
Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1’s role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.  相似文献   
74.
Grafting has been adopted for a wide range of crops to enhance productivity and resilience; for example, grafting of Solanaceous crops couples disease-resistant rootstocks with scions that produce high-quality fruit. However, incompatibility severely limits the application of grafting and graft incompatibility remains poorly understood. In grafts, immediate incompatibility results in rapid death, but delayed incompatibility can take months or even years to manifest, creating a significant economic burden for perennial crop production. To gain insight into the genetic mechanisms underlying this phenomenon, we developed a model system using heterografting of tomato (Solanum lycopersicum) and pepper (Capsicum annuum). These grafted plants express signs of anatomical junction failure within the first week of grafting. By generating a detailed timeline for junction formation, we were able to pinpoint the cellular basis for this delayed incompatibility. Furthermore, we inferred gene regulatory networks for compatible self-grafts and incompatible heterografts based on these key anatomical events, which predict core regulators for grafting. Finally, we examined the role of vascular development in graft formation and uncovered SlWOX4 as a potential regulator of graft compatibility. Following this predicted regulator up with functional analysis, we show that Slwox4 homografts fail to form xylem bridges across the junction, demonstrating that indeed, SlWOX4 is essential for vascular reconnection during grafting, and may function as an early indicator of graft failure.

Gene regulatory networks for compatible self-grafted and incompatible heterografted pepper/tomato plants identify a role for SlWOX4 during junction formation.  相似文献   
75.
The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14–nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14–nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14–nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3′-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14–nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12–nsp7–nsp8 (nsp12–7–8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14–nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14–nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.  相似文献   
76.
Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a crucial enzyme in energy metabolism, captures the redox potential energy from NADH oxidation/ubiquinone reduction to create the proton motive force used to drive ATP synthesis in oxidative phosphorylation. High-resolution single-particle electron cryo-EM analyses have provided detailed structural knowledge of the catalytic machinery of complex I, but not of the molecular principles of its energy transduction mechanism. Although ubiquinone is considered to bind in a long channel at the interface of the membrane-embedded and hydrophilic domains, with channel residues likely involved in coupling substrate reduction to proton translocation, no structures with the channel fully occupied have yet been described. Here, we report the structure (determined by cryo-EM) of mouse complex I with a tight-binding natural product acetogenin inhibitor, which resembles the native substrate, bound along the full length of the expected ubiquinone-binding channel. Our structure reveals the mode of acetogenin binding and the molecular basis for structure–activity relationships within the acetogenin family. It also shows that acetogenins are such potent inhibitors because they are highly hydrophobic molecules that contain two specific hydrophilic moieties spaced to lock into two hydrophilic regions of the otherwise hydrophobic channel. The central hydrophilic section of the channel does not favor binding of the isoprenoid chain when the native substrate is fully bound but stabilizes the ubiquinone/ubiquinol headgroup as it transits to/from the active site. Therefore, the amphipathic nature of the channel supports both tight binding of the amphipathic inhibitor and rapid exchange of the ubiquinone/ubiquinol substrate and product.  相似文献   
77.
BackgroundCrusted scabies is a debilitating dermatological condition. Although still relatively rare in the urban areas of Australia, rates of crusted scabies in remote Aboriginal communities in the Northern Territory (NT) are reported to be among the highest in the world.ObjectiveTo estimate the health system costs associated with diagnosing, treating and managing crusted scabies.MethodsA disease pathway model was developed to identify the major phases of managing crusted scabies. In recognition of the higher resource use required to treat more severe cases, the pathway differentiates between crusted scabies severity grades. The disease pathway model was populated with data from a clinical audit of 42 crusted scabies patients diagnosed in the Top-End of Australia’s Northern Territory between July 1, 2016 and May 1, 2018. These data were combined with standard Australian unit costs to calculate the expected costs per patient over a 12-month period, as well as the overall population cost for treating crusted scabies.FindingsThe expected health care cost per patient diagnosed with crusted scabies is $35,418 Australian dollars (AUD) (95% CI: $27,000 to $43,800), resulting in an overall cost of $1,558,392AUD (95% CI: $1,188,000 to $1,927,200) for managing all patients diagnosed in the Northern Territory in a given year (2018). By far, the biggest component of the health care costs falls on the hospital system.DiscussionThis is the first cost-of-illness analysis for treating crusted scabies. Such analysis will be of value to policy makers and researchers by informing future evaluations of crusted scabies prevention programs and resource allocation decisions. Further research is needed on the wider costs of crusted scabies including non-financial impacts such as the loss in quality of life as well as the burden of care and loss of well-being for patients, families and communities.  相似文献   
78.
Water flow in river networks is frequently regulated by man‐made in‐stream barriers. These obstacles can hinder dispersal of aquatic organisms and isolate populations leading to the loss of genetic diversity. Although millions of small in‐stream barriers exist worldwide, their impact on dispersal of macroinvertebrates remains unclear. Therefore, we, therefore, assessed the effects of such barriers on the population structure and effective dispersal of five macroinvertebrate species with strictly aquatic life cycles: the amphipod crustacean Gammarus fossarum (clade 11), three snail species of the Ancylus fluviatilis species complex and the flatworm Dugesia gonocephala. We studied populations at nine weirs and eight culverts (3 pipes, 5 tunnels), built 33–109 years ago, mainly in the heavily fragmented catchment of the river Ruhr (Sauerland, Germany). To assess fragmentation and barrier effects, we generated genome‐wide SNP data using ddRAD sequencing and evaluated clustering, differentiation between populations up‐ and downstream of each barrier and effective migration rates among sites and across barriers. Additionally, we applied population genomic simulations to assess expected differentiation patterns under different gene flow scenarios. Our data show that populations of all species are highly isolated at regional and local scales within few kilometers. While the regional population structure likely results from historical processes, the strong local differentiation suggests that contemporary dispersal barriers exist. However, we identified significant barrier effects only for pipes (for A. fluviatilis II and III) and few larger weirs (>1.3 m; for D. gonocephala). Therefore, our data suggest that most small in‐stream barriers can probably be overcome by all studied taxa frequently enough to prevent fragmentation. However, it remains to be tested if the strong local differentiation is a result of a cumulative effect of small barriers, or if larger in‐stream barriers, land use, chemical pollution, urbanization, or a combination of these factors impede gene flow.  相似文献   
79.
80.
Viruses are highly evolvable, but what traits endow this property? The high mutation rates of viruses certainly play a role, but factors that act above the genetic code, like protein thermostability, are also expected to contribute. We studied how the thermostability of a model virus, bacteriophage λ, affects its ability to evolve to use a new receptor, a key evolutionary transition that can cause host-range evolution. Using directed evolution and synthetic biology techniques we generated a library of host-recognition protein variants with altered stabilities and then tested their capacity to evolve to use a new receptor. Variants fell within three stability classes: stable, unstable, and catastrophically unstable. The most evolvable were the two unstable variants, whereas seven of eight stable variants were significantly less evolvable, and the two catastrophically unstable variants could not grow. The slowly evolving stable variants were delayed because they required an additional destabilizing mutation. These results are particularly noteworthy because they contradict a widely supported contention that thermostabilizing mutations enhance evolvability of proteins by increasing mutational robustness. Our work suggests that the relationship between thermostability and evolvability is more complex than previously thought, provides evidence for a new molecular model of host-range expansion evolution, and identifies instability as a potential predictor of viral host-range evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号