首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16315篇
  免费   1339篇
  国内免费   8篇
  17662篇
  2023年   70篇
  2022年   200篇
  2021年   343篇
  2020年   207篇
  2019年   282篇
  2018年   327篇
  2017年   294篇
  2016年   498篇
  2015年   761篇
  2014年   900篇
  2013年   1060篇
  2012年   1306篇
  2011年   1246篇
  2010年   794篇
  2009年   697篇
  2008年   964篇
  2007年   937篇
  2006年   905篇
  2005年   858篇
  2004年   828篇
  2003年   759篇
  2002年   719篇
  2001年   183篇
  2000年   148篇
  1999年   182篇
  1998年   228篇
  1997年   147篇
  1996年   130篇
  1995年   121篇
  1994年   128篇
  1993年   110篇
  1992年   99篇
  1991年   96篇
  1990年   68篇
  1989年   65篇
  1988年   58篇
  1987年   67篇
  1986年   56篇
  1985年   68篇
  1984年   66篇
  1983年   67篇
  1982年   82篇
  1981年   57篇
  1980年   39篇
  1979年   63篇
  1978年   48篇
  1976年   34篇
  1975年   35篇
  1974年   36篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Bone healing commences with an inflammatory reaction which initiates the regenerative healing process leading in the end to reconstitution of bone. An unbalanced immune reaction during this early bone healing phase is hypothesized to disturb the healing cascade in a way that delays bone healing and jeopardizes the successful healing outcome. The immune cell composition and expression pattern of angiogenic factors were investigated in a sheep bone osteotomy model and compared to a mechanically-induced impaired/delayed bone healing group. In the impaired/delayed healing group, significantly higher T cell percentages were present in the bone hematoma and the bone marrow adjacent to the osteotomy gap when compared to the normal healing group. This was mirrored in the higher cytotoxic T cell percentage detected under delayed bone healing conditions indicating longer pro-inflammatory processes. The highly activated periosteum adjourning the osteotomy gap showed lower expression of hematopoietic stem cell markers and angiogenic factors such as heme oxygenase and vascular endothelial growth factor. This indicates a deferred revascularization of the injured area due to ongoing pro-inflammatory processes in the delayed healing group. Results from this study suggest that there are unfavorable immune cells and factors participating in the initial healing phase. In conclusion, identifying beneficial aspects may lead to promising therapeutical approaches that might benefit further by eliminating the unfavorable factors.  相似文献   
992.
New insights into community-level responses at the urban fringe, and the mechanisms underlying them, are needed. In our study, we investigated the compositional distinctiveness and variability of a breeding bird community at both sides of established edges between suburban residential areas and woodland reserves in Canberra, Australia. Our goals were to determine if: (1) community-level responses were direct (differed with distance from the edge, independent of vegetation) or indirect (differed in response to edge-related changes in vegetation), and (2) if guild-level responses provided the mechanism underpinning community-level responses. We found that suburbs and reserves supported significantly distinct bird communities. The suburban bird community, characterised by urban-adapted native and exotic species, had a weak direct edge response, with decreasing compositional variability with distance from the edge. In comparison, the reserve bird community, characterised by woodland-dependent species, was related to local tree and shrub cover. This was not an indirect response, however, as tree and shrub cover was not related to edge distance. We found that the relative richness of nesting, foraging and body size guilds also displayed similar edge responses, indicating that they underpinned the observed community-level responses. Our study illustrates how community-level responses provide valuable insights into how communities respond to differences in resources between two contrasting habitats. Further, the effects of the suburban matrix penetrate into reserves for greater distances than previously thought. Suburbs and adjacent reserves, however, provided important habitat resources for many native species and the conservation of these areas should not be discounted from continued management strategies.  相似文献   
993.
Lamins A and C but not lamin B1 regulate nuclear mechanics   总被引:7,自引:0,他引:7  
Mutations in the nuclear envelope proteins lamins A and C cause a broad variety of human diseases, including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, and Hutchinson-Gilford progeria syndrome. Cells lacking lamins A and C have reduced nuclear stiffness and increased nuclear fragility, leading to increased cell death under mechanical strain and suggesting a potential mechanism for disease. Here, we investigated the contribution of major lamin subtypes (lamins A, C, and B1) to nuclear mechanics by analyzing nuclear shape, nuclear dynamics over time, nuclear deformations under strain, and cell viability under prolonged mechanical stimulation in cells lacking both lamins A and C, cells lacking only lamin A (i.e. "lamin C-only" cells), cells lacking wild-type lamin B1, and wild-type cells. Lamin A/C-deficient cells exhibited increased numbers of misshapen nuclei and had severely reduced nuclear stiffness and decreased cell viability under strain. Lamin C-only cells had slightly abnormal nuclear shape and mildly reduced nuclear stiffness but no decrease in cell viability under strain. Interestingly, lamin B1-deficient cells exhibited normal nuclear mechanics despite having a significantly increased frequency of nuclear blebs. Our study indicates that lamins A and C are important contributors to the mechanical stiffness of nuclei, whereas lamin B1 contributes to nuclear integrity but not stiffness.  相似文献   
994.
During the last decade, use of radio frequency (RF) applications like mobile phones and other wireless devices, has increased remarkably. This has triggered numerous studies related to possible health risks due to the exposure of RF electromagnetic (EM) fields. One safety aspect is the coupling of EM fields with active and passive implants in the human body. While interactions with active implants have been quite extensively researched, only a few studies have focused on passive implants. The present article reviews interaction mechanisms and studies of passive metallic, that is, conductive, implants in common external RF EM fields. It is found that implants have been mostly studied numerically, and experimental studies are rare. Furthermore, the studies cover mostly far-field conditions and only a few have studied implants in near fields. A summary of results indicates that a conductive object in tissues may cause notable local enhancement of the EM field and thus enhanced power absorption. The degree of enhancement depends, for example, on the orientation, the dimensions, the shape, and the location of the implant. However, in most of the cases, the field enhancement has not been strong enough to cause remarkable excess heating (more than 1 degrees C) of tissues.  相似文献   
995.
Ischemic stroke from a reduction in blood flow to the brain microvasculature results in a subsequent decreased delivery of oxygen (i.e., hypoxia) and vital nutrients to endothelial, neuronal, and glial cells. Hypoxia associated with stroke has been shown to increase paracellular permeability of the blood-brain barrier, leading to the release of cellular mediators and brain tissue injury. Whereas reperfusion does not occur in all ischemic strokes, increased permeability has been seen in posthypoxic reoxygenation. Currently, it is unknown whether these deleterious effects result from cellular mechanisms stimulated by decreased oxygen during stroke or posthypoxic reoxygenation stress. This study used primary bovine brain microvessel endothelial cells (BBMECs) to examine the involvement of nitric oxide (NO) as a mediator in hypoxia-induced permeability changes. Hypoxia-induced increased transport of [14C]sucrose across BBMEC monolayers compared with normoxia was attenuated by either posthypoxic reoxygenation or inhibition of NO synthase (NOS). The hypoxia-induced permeability effect was further reduced when NOS inhibition was combined with posthypoxic reoxygenation. Additionally, a significant increase in total NO was seen in BBMECs after hypoxic exposure. This correlation was supported by the increased [14C]sucrose permeability observed when BBMECs were exposed to the NO donor diethylenetriaamine NONOate. Western blot analyses of NOS isoforms showed a significant increase in the inducible isoform after hypoxic exposure with a subsequent reduction in expression on reoxygenation. Results from this study suggest that hypoxia-induced blood-brain barrier breakdown can be diminished by inhibition of NO synthesis, decreased concentration of NO metabolites, and/or reoxygenation.  相似文献   
996.
Fundamental questions of floral morphology remain unresolved in the grasslike monocots in order Poales, including what constitutes a flower and what constitutes a spikelet. The mapaniid sedges have particularly complex spikeletlike structures, variously interpreted as clusters of flowers or spikelets. Recent phylogenetic studies of Cyperaceae have identified the mapaniid clade as sister to the rest of the family, but the homology of mapaniid reproductive units (RUs) and spikeletlike units (SLUs) to other sedge flowers and spikelets is unclear. We examined reproductive development in the mapaniid Exocarya sclerioides. Inflorescence branches terminated in a SLU with bracts and 1-4 RUs. RUs had four small leaflike structures (LLSs): two lateral LLSs, each associated with a stamen, an abaxial LLS associated with a stamen, and an adaxial LLS. The gynoecium terminated the RU. All RUs were axillary to bracts, and unexpanded bracts and RUs were produced beyond expanded RUs, so SLUs were racemose. RUs developed from a single primordium that initiated two lateral LLSs, then two lateral stamens, then the gynoecium. Initiation of the abaxial LLS and stamen and the adaxial LLS followed. We hypothesize that the RU is a sympodial branch that terminates in a hermaphroditic flower with two stamens and a gynoecium; the two lateral LLSs are halves of a deeply divided prophyll.  相似文献   
997.
In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micron-sized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours' adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications.  相似文献   
998.
999.
The type 1 glycine transporter plays an important in regulating homeostatic glycine levels in the brain that are relevant to the activation of the NMDA receptor by the excitatory neurotransmitter glutamate. We describe herein the structure–activity relationships (SAR) of a structurally novel class of GlyT1 inhibitors following on a lead derived from high throughput screening, which shows good selectivity for GlyT1 and potent activity in elevating CSF levels of glycine.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号